Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow E=1+\frac{1}{2}\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{1}{2}\left(3+4+5+...+201\right)\)
\(=1+\frac{1}{2}\left(1+2+3+...+201-1-2\right)\)
\(=1+\frac{1}{2}\left(\frac{201.202}{2}-3\right)=10150\)
\(\frac{21}{5}\left|x\right|< 2019\Rightarrow\left|x\right|< 2019\div\frac{21}{5}=\frac{3365}{7}\)
\(\Rightarrow-480\le x\le480\)
\(\Rightarrow\sum x=-480+480-479+479+...+-1+1+0=0\)
\(\frac{2^{24}\left(x-3\right)}{\frac{81}{35}.\left(6.2^{24}-2^{26}\right)}=\frac{25}{9}\)
\(\Leftrightarrow\frac{2^{24}\left(x-3\right)}{2^{24}\left(6-2^2\right)}=\frac{25}{9}.\frac{81}{35}\)
\(\Leftrightarrow\frac{x-3}{2}=\frac{45}{7}\)
\(\Leftrightarrow x-3=\frac{90}{7}\)
\(\Rightarrow x=\frac{111}{7}\)
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+.....+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}\)
\(=\frac{\frac{201.\left(201+1\right)}{2}-1}{2}\)
\(=10150\)
\(\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\left(\frac{9}{24}+-\frac{18}{24}+\frac{14}{24}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)
\(=\frac{5}{24}.\frac{6}{5}+\frac{1}{2}\)
\(=\frac{1}{4}+\frac{1}{2}\)
\(=\frac{1}{4}+\frac{2}{4}\)
\(=\frac{3}{4}\)
\(\frac{1}{2}+\frac{3}{4}-\left(\frac{3}{4}-\frac{4}{5}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\left(\frac{15}{20}-\frac{16}{20}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\frac{-1}{20}\)
\(=\frac{10}{20}+\frac{15}{20}-\frac{-1}{20}\)
\(=\frac{25}{20}-\frac{-1}{20}\)
\(=\frac{26}{20}\)
\(=\frac{13}{10}\)
a) \(\frac{53}{101}.\frac{-13}{97}+\frac{53}{101}.\frac{-84}{97}\)
\(=\frac{53}{101}\left(\frac{-13}{97}+\frac{-84}{97}\right)\)
\(=\frac{53}{101}.\frac{-97}{97}\)
\(=\frac{53}{101}.\left(-1\right)\)
\(=\frac{-53}{101}\)
b) \(\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{1}{57}-\frac{1}{5757}\right).0\)
\(=0\)
c) \(\frac{3^2}{25}.\frac{75}{-21}.\frac{50}{35}\)
\(=\frac{3^2.75.50}{25.\left(-21\right).35}\)
\(=\frac{3.3.25.3.5.5.2}{25.3.\left(-7\right).5.7}\)
\(=\frac{3.3.5.2}{\left(-7\right).7}\)
\(=\frac{90}{-49}\)
d) \(\frac{25.48-25.18}{20.5^3}\)
\(=\frac{25\left(48-18\right)}{10.2.125}\)
\(=\frac{25.10.3}{10.2.25.5}\)
\(=\frac{3}{10}\)
Ta co :
E=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{201}{2}\)
=\(\frac{2+3+4+5+...+201}{2}\)
=\(\frac{\left[\left(201+2\right)\left(201-2\right):1+1\right]:2}{2}\)
=\(\frac{40398:2}{2}\)
=\(\frac{20199}{2}\)
Đúng thì k không thì giúp tớ với
kết quả ra sai rồi
\(E=\frac{2+3+4+...+201}{2}=\frac{\frac{\left[\left(201-2\right):1+1\right].\left(201+2\right)}{2}}{2}=\frac{\frac{200.203}{2}}{2}=\frac{100.203}{2}\)=10150