K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: \(=\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=18+6\sqrt{5}-6\sqrt{5}-20=-2\)

b: \(\Leftrightarrow\dfrac{x^2-5x+15-x^2+5x-10}{\sqrt{x^2-5x+15}+\sqrt{x^2-5x+10}}=3\)

=>\(\sqrt{x^2-5x+15}+\sqrt{x^2-5x+10}=\dfrac{5}{3}\)

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.Câu 1:a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)Câu 2:a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)b) Cho số tự nhiên \(n\ge2\).Biết rằng với...
Đọc tiếp

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.

Câu 1:

a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)

b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)

Câu 2:

a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)

b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.

Câu 3: 

a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.

Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)

b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:

\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.

a) Chứng minh: E, L, F thẳng hàng 

b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.

Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.

Hết!

 

2
20 tháng 4 2019

Đây là đề của trường nào vậy bạn?

21 tháng 4 2019

Đề khó vcl ...

Câu 1: Tính \(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)Câu 2: Giải phương trình và hệ phương trình saua) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông...
Đọc tiếp

Câu 1: Tính 

\(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)

\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

Câu 2: Giải phương trình và hệ phương trình sau

a) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)

Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông của tam giác đó.

Câu 4: Từ một điểm A ở ngoài đường tròn (O; R) vẽ tiếp tuyến AB và cát tuyến AMN của đường tròn (M nằm giữa A và N; B thuộc cung lớn MN). Gọi C là điểm chính giữa cung nhỏ MN. Đường thẳng MN lần lượt cắt OC và BC tại I và E.

a) CMR: Tứ giác AIOB là tứ giác nội tiếp.

b) CMR: \(\Delta ABE\)cân.

c) Biết AB = 2R. Tính chu vi của nửa đường tròn ngoại tiếp tứ giác AIOB theo R.

d) Kẻ tiếp tuyến thứ hai AL của (O). Gọi K là giao điểm của LB và AO. CMR: AM.AN = AL2; AK.AO = AM.AN

Câu 5: Cho x, y là hai số thỏa mãn x + 2y = 3. Tìm giá trị nhỏ nhất của: E = x2 + 2y2 

Câu 6: Tìm các cặp nghiệm nguyên trong các trường hợp sau

a) x2 - xy + y2 = 2x - 3y - 2

b) m2 + n2 = m + n + 8

Help me!!!

Thanks trc

3
11 tháng 8 2020

CÂU 1:

\(A=\sqrt[4]{\left(2\sqrt{6}+5\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)

\(A=\sqrt{2\sqrt{6}+5}+\sqrt{5-2\sqrt{6}}\)

\(A=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(A=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)

\(A=2\sqrt{3}\)

11 tháng 8 2020

CÂU 1:

\(B=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(B=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(B=1-a\)

Vậy \(B=1-a\)

Đề mình tổng hợp cho các bạn thi hsg toán 9.+) Yêu cầu:Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?Ví dụ: Bài 1: Giải:....Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12Đề bài: Câu 1:a)...
Đọc tiếp

Đề mình tổng hợp cho các bạn thi hsg toán 9.

+) Yêu cầu:

Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?

Ví dụ: Bài 1: Giải:....

Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.

+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12

Đề bài: 

Câu 1:

a) Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\). Tính giá trị của biểu thức: \(A=x^5-4x^4+x^3-x^2-2x+2019\)

b) Cho \(x=\sqrt[3]{2+2\sqrt{3}}+\sqrt[3]{2-2\sqrt{3}}-1\). Tính giá trị biểu thức \(P=x^3\left(x^2+3x+9\right)^3\)

Câu 2:

a) Giải phương trình \(\frac{\left(x-4\right)\sqrt{x-2}-1}{\sqrt{4-x}+x-5}=\frac{2+\left(2x-4\right)\sqrt{x-2}}{x-1}\)

b) Giải hệ phương trình \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{x+2}+\sqrt{x+3}=\sqrt{y-1}+\sqrt{y-2}+\sqrt{y-3}\\x^2+y^2=10\end{cases}}\)

Câu 3:

a) Cho hai đa thức \(f\left(x\right)=\frac{1}{x}+\frac{1}{x-2}+\frac{1}{x-4}+...+\frac{1}{x-2018}\)và \(g\left(x\right)=\frac{1}{x-1}+\frac{1}{x-3}+\frac{1}{x-5}+...+\frac{1}{x-2017}\)

Chứng minh rằng :\(\left|f\left(x\right)-g\left(x\right)\right|>2\)với x là các số nguyên thỏa mãn 0 < x < 2018

b) Cho m, n là hai số nguyên dương lẻ sao cho \(n^2-1\)chia hết cho \(\left|m^2-n^2+1\right|\). Chứng minh rằng \(\left|m^2-n^2+1\right|\)là số chính phương

c) Tìm nghiệm nguyên dương của phương trình \(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)với điều kiện x, y là các số nguyên tố

d) Chứng minh rằng phương trình \(x^{15}+y^{15}+z^{15}=19^{2003}+7^{2003}+9^{2003}\)không có nghiệm nguyên

Câu 4:

a) Cho điểm A cố định thuộc trên đường tròn (O; R). BC là dây cung của đường tròn (O; R), BC di động và tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Tiếp tuyến tại B, C của đường tròn (O) cắt nhau ở G. Gọi S là giao điểm của GD và EF. Chứng minh rằng đường thẳng SH luôn đi qua một điểm cố định.

b) Cho tam giác ABC vuông tại C, D là chân đường cao vẽ từ C. Cho X là điểm bất kì thuộc đoạn thẳng CD (X khác C và D). Cho K là điểm trên đoạn thẳng AX sao cho BK = BC. Tương tự L là điểm trên đoạn thẳng BX sao cho AL = AC. Cho M là giao điểm của AL và BK. Chứng minh rằng MK = ML

Câu 5:

a)  Cho a, b, c là các số thực dương thỏa mãn điều kiện a + b + c = 3. Chứng minh rằng:\(8\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+9\ge10\left(a^2+b^2+c^2\right)\)

b) Cho tập hợp X = {0;1;2;...;14}. Gọi A là một tập hợp gồm 6 phần tử được lấy ra từ X. Chứng minh rằng trong các tập hợp con thực sự của A luôn tìm được hai tập có tổng các phần tử bằng nhau . (Tập hợp con thực sự của tập Y là tập con của Y khác tập rỗng và khác Y)

P/s: Đề bài tổng hợp có gì sai sót mong các bạn góp ý  và bổ sung  không cãi nhau; spam gây mất trật tự. 

12
1 tháng 9 2020

Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))

sol nhẹ vài bài

\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)

\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\) 

Khi đó \(z-y⋮x;z+y+3⋮x\)

Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\) 

Trường hợp này loại

Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)

Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)

\(\Rightarrow z< x+y\)

Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)

Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)

Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và  \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)

\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z

\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)

\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)

Vậy.............

1 tháng 9 2020

Bài 1 : Giải :

a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)

\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)

\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)

\(\Rightarrow x+1=x\sqrt[3]{2}\)

\(\Rightarrow\left(x+1\right)^3=2x^3\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)

\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)

\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)

\(=2020\)

P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))

Đề thi thử tuyển sinh lớp 10 chuyên toán - Thời gian : 150 phút (Dành cho ai cần, mình gửi đáp án sau) Câu 1. a, Cho \(x=\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\) Tính giá trị biểu thức \(P=x^4-2x^3-3x^2+2x+8\) b, Biết rằng phương trình \(x^3-ax+b=0\) ( a, b là các số hữu tỉ ) có nghiệm \(x=\frac{1-\sqrt{2}}{1+\sqrt{2}}\). Tìm a, b ? Câu 2. a, Giải hệ phương trình:...
Đọc tiếp

Đề thi thử tuyển sinh lớp 10 chuyên toán - Thời gian : 150 phút

(Dành cho ai cần, mình gửi đáp án sau)

Câu 1.

a, Cho \(x=\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\)

Tính giá trị biểu thức \(P=x^4-2x^3-3x^2+2x+8\)

b, Biết rằng phương trình \(x^3-ax+b=0\) ( a, b là các số hữu tỉ ) có nghiệm \(x=\frac{1-\sqrt{2}}{1+\sqrt{2}}\).

Tìm a, b ?

Câu 2.

a, Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3\left(2y+3\right)=1\\x\left(y^3-2\right)=2\end{matrix}\right.\)

b, Giải phương trình: \(x=\left(2020+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)

Câu 3.

a, Giải phương trình nghiệm nguyên: \(\sqrt{x^2-3x+2}=y+1\)

b, Cho x, y là các số dương thỏa mãn: \(x+y=1\). Tìm GTNN của biểu thức:

\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}\)

Câu 4. Cho hai đường tròn \(\left(O\right)\)\(\left(O'\right)\) cắt nhau tại A, B. Vẽ tiếp tuyến chung ngoài

MN với hai đường tròn sao cho tia BA cắt MN tại I \(\left(M\in\left(O\right);N\in\left(O'\right)\right)\).

Lấy điểm C đối xứng với A qua I.

a, Chứng minh tứ giác BMCN nội tiếp.

b, Vẽ tiếp tuyến tại A với \(\left(O\right)\) cắt \(\left(O'\right)\) tại E và tiếp tuyến tại A với \(\left(O'\right)\) cắt \(\left(O\right)\)

tại F. MA cắt NE tại H, NA cắt MF tại K. Chứng minh: \(\widehat{MHN}=\widehat{MKN}\)

Câu 5. Cho a, b, c là các số thực dương thỏa mãn: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\ge1\)

Chứng minh: \(a+b+c\ge ab+bc+ca\)

0
Đề ôn chuyên Toán lần 1 1, a, Rút gọn \(P=\left[\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{xy}}{x\sqrt{x}+y\sqrt{y}}\right].\left[\left(\frac{1}{\sqrt{x}-\sqrt{y}}-\frac{3\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}}\right):\frac{x-y}{x+\sqrt{xy}+y}\right]\) (1,5 điểm ) b, Tìm nghiệm nguyên của phương trình \(x^3-y^3=6xy+3\) (1,5 điểm ) 2, Trong mặt phẳng tọa độ Oxy cho (d): y = \(\frac{2m-4}{2m+5}+4-2m\left(m\ne-\frac{5}{2}\right)\)...
Đọc tiếp

Đề ôn chuyên Toán lần 1

1, a, Rút gọn \(P=\left[\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{xy}}{x\sqrt{x}+y\sqrt{y}}\right].\left[\left(\frac{1}{\sqrt{x}-\sqrt{y}}-\frac{3\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}}\right):\frac{x-y}{x+\sqrt{xy}+y}\right]\) (1,5 điểm )

b, Tìm nghiệm nguyên của phương trình \(x^3-y^3=6xy+3\) (1,5 điểm )

2, Trong mặt phẳng tọa độ Oxy cho (d): y = \(\frac{2m-4}{2m+5}+4-2m\left(m\ne-\frac{5}{2}\right)\) .Tìm m để (d) cắt Ox , Oy tại A và B sao cho diện tích tam giác OAB lớn nhất . Tính giá trị lớn nhất đó ( 3 điểm )

3 , a, Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\) ( 3 điểm )

b, Giải hệ phương trình (3 điểm ) \(\left\{{}\begin{matrix}2\sqrt{2x+y}=3-2x-y\\x^2-2xy=y^2+2\end{matrix}\right.\)

4, Cho tam giác ABC nhọn nội tiếp (O) . đường tròn tâm J đường kính BC cắt AB,AC ở E và F. Gọi H và K lần lượt là trực tâm tam giác ABC , AEF .Gọi I là tâm đường tròn ngoại tiếp tam giác AEF

a, Chứng minh A,I,H thẳng hàng ( 2 điểm ) b, Chứng minh KH , EF, IJ đồng quy (2 điểm )

5, Cho a,b,c >0 và abc=1 . Chứng minh \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ca}{c^4+a^4+ca}\le1\) ( 2 điểm )

6, CHO (O) . ĐIỂM A Ở NGOÀI ĐƯỜNG TRÒN VẼ 2 TIẾP TUYẾN AB ,AC VÀ CÁT TUYẾN ADE ( D NẰM GIỮA A VÀ E ) . ĐƯỜNG THẲNG QUA D // AB CẮT BC,BE Ở H VÀ K . CHỨNG MINH DH=HK (2 ĐIỂM )

3
NV
12 tháng 5 2020

5.

\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2=\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow VT\le\frac{ab}{ab\left(a^2+b^2\right)+ab}+\frac{bc}{bc\left(b^2+c^2\right)+bc}+\frac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(\Rightarrow VT\le\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

\(VT\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{zx\left(x+z\right)+xyz}\)

\(VT\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

NV
12 tháng 5 2020

2. Đề bài bạn viết thiếu thì phải

3. a/

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2+5x+1}=a\\\sqrt{4x^2-4x+4}=b\end{matrix}\right.\)

\(\Rightarrow a-b=a^2-b^2\Leftrightarrow a-b=\left(a-b\right)\left(a+b\right)\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)

- Với \(a=b\Rightarrow9x-3=0\Rightarrow x=...\)

- Với \(a+b=1\Rightarrow\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)

\(\Leftrightarrow\sqrt{4x^2+5x+1}+\sqrt{\left(2x-1\right)^2+3}=1\)

\(VT\ge\sqrt{3}>1\Rightarrow\) pt vô nghiệm

b/ ĐKXĐ: ...

\(2x+y+2\sqrt{2x+y}-3=0\)

\(\Leftrightarrow\left(\sqrt{2x+y}-1\right)\left(\sqrt{2x+y}+3\right)=0\)

\(\Leftrightarrow\sqrt{2x+y}=1\Rightarrow y=1-2x\)

Thay vào pt dưới:

\(x^2-2x\left(1-2x\right)=\left(1-2x\right)^2+2\)

\(\Leftrightarrow...\) bạn tự giải

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\) 2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC. a) Tính AB, AC ? b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH. c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C)...
Đọc tiếp

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\)

2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC.

a) Tính AB, AC ?

b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH.

c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C) bán kính 6cm.

3. Vẽ đồ thị hàm số:

a) Vẽ đồ thị hàm số y=2x (d1) & y=-2x+4 (d2).

b) Xác định tọa độ giao điểm I của (d1) & (d2).

4. Cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau tại A, (R>R'), đường thẳng OO' cắt (O) và (O') tại B và C. Qua trung điểm M của BC vẽ dây DE⊥BC.

a) Chứng minh: BECD là hình thoi.

b) Đoạn DC cắt (O') tại F. Chứng minh: A, E, F thẳng hàng.

c) Chứng minh: MF là tiếp tuyến của đường tròn.

5. Rút gọn:

a) \(5\sqrt{\dfrac{1}{5}}-\dfrac{1}{\sqrt{5}-2}\)

b) \(\sqrt{3-2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

c) \(A=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}+2\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}-2\right)\)

d) \(B=\dfrac{\sqrt{x^2}+\sqrt{9x^2}+\sqrt{45x^2}}{\sqrt{x}-\sqrt{16x}-\sqrt{25x}-\sqrt{180x}}\left(x>0\right)\)

6. Cho hàm số \(y=-\dfrac{x}{2}\) (d1) và hàm số \(y=2x-5\) (d2).

a) Xác định tọa độ giao điểm của (d1) & (d2). Vẽ (d1) & (d2) trên cùng mp tọa độ.

b) Cho đường thẳng (d3): y=ax+b. Xác định a và b để (d3) // (d1) và cắt (d2) tại điểm trên trục tung.

7. Từ A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB & AC với (O).

a) Chứng minh: OA là đường trung trực của BC.

b) OA cắt BC tại H. Chứng minh: HO.HA=HB.HC .

c) Đoạn OA cắt đường thẳng (O) tại I. Chứng minh: AB, AC là các tiếp tuyến của đường tròn (I) bán kính IH.

8.Cho \(A\left(1;-2\right),B\left(-2;7\right),C\left(\dfrac{-1}{3\sqrt{2}+3};\sqrt{2}\right)\)

a) Viết phương trình đường thẳng AB.

b) Chứng minh: ba điểm A, B, C thẳng hàng.

9. Cho đường tròn (O) đường kính AB=2R, dây CD⊥AB tại trung điểm H của OB.

a) Chứng minh: OCBD là hình thoi.

b) Tính CD theo R.

c) Chứng minh: ΔACD đều.

d) Gọi E là điểm đối xứng của A qua H. Chứng minh: EC & ED là các tiếp tuyến của đường tròn (O).

10. Tìm ĐKXĐ và rút gọn biểu thức:

\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\)

11. Trong mp tọa độ Oxy, cho 4 điểm: \(A\left(-2;0\right),B\left(0;1\right),C\left(1;0\right),D\left(0;-2\right)\)

a) Chứng minh: A và B thuộc đường thẳng d1: \(y=\dfrac{1}{2}x+1\)

b) Viết phương trình đường thẳng d2 đi qua C và D.

c) Vẽ d1 và d2, xác định tọa độ giao điểm I của chúng.

12. Cho nửa đường tròn (O) đường kính AB và M∈(O). Vẽ MH⊥AB, đường tròn đường kính MH cắt (O) tại N và cắt MA, MB tại E và F.

a) MEHF là hình gì?

b) Chứng minh: EF là tiếp tuyến của đường tròn ngoại tiếp ΔAEH.

c) MN cắt AB tại S. Chứng minh: MN.MS=ME.MA .

0

Câu 1:

a: \(\Leftrightarrow\left\{{}\begin{matrix}4\sqrt{x-2}=4\\\sqrt{x-2}+\sqrt{y+2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\\sqrt{y+2}=3-1=2\end{matrix}\right.\)

=>x=3; y=2

b: Tọa độ giao là:

x+1=-x+3 và y=x+1

=>x=1 và y=2

Thay x=1 và y=2 vào (d), ta đc:

(m^2-1)+m^2-5=2

=>2m^2=2+5+1=8

=>m=2 hoặc m=-2