Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6,3.12 -21.3,6 = 75,6 -75,6 =0
Trong tích A có 1 thừa số bằng 0 nên A=0
Bài này quá dễ
a) Ta có: \(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{10}-1\right)=\frac{-1}{2}.\frac{-2}{3}...\frac{-9}{10}=\frac{-\left(1.2.3...9\right)}{2.3.4...10}=-\frac{1}{10}\)
b) Ta có : \(B=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)....\left(\frac{1}{100}-1\right)=\frac{-3}{4}.\frac{-8}{9}....\frac{-99}{100}=-\frac{3.8....99}{\left(2.3...10\right)\left(2.3...10\right)}\)
\(=-\frac{1.3.2.4...9.11}{\left(2.3....10\right)\left(2.3...10\right)}=\frac{\left(1.2.3...10\right).\left(3.4..10.11\right)}{\left(2.3...10\right).\left(2.3.4...10\right)}=\frac{11}{2}=5,5\)
c) Ta có : \(C=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{n+1}\right)=\frac{1}{2}.\frac{2}{3}...\frac{n}{n+1}=\frac{1.2...n}{2.3...\left(n+1\right)}=\frac{1}{n+1}\)
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
Mk nghĩ như thế này ,sai thì thôi nhé
\(9.3^3.\frac{1}{81}.3^2=3^2.3^3.3^{-4}.3^2=3^{2+3-4+2}=3^3\)
bạn tự làm tiếp nha , mk lười viết lắm , cho bạn chút công thức nè :
\(a^{-x}=\frac{1}{a^x};\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^n\)
k cho mk nha các bạn
\(b,4x2^5:(2^3x\dfrac{1}{6})=2^2x2^5:(2^3x\dfrac{1}{6})=2^2x2^5=\left(2\right)^{2+5}:\dfrac{4}{3}=2^7:\dfrac{4}{3}=96\)
ta có:1/8^100
-1/4^200=(-1/4^2)^100=1/16^100
=>1/8^100 >1/16^100
=>1/8^100 >-1/4^200
treuyrht5tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt