K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

1 tháng 1 2017

GTLN:A=11

GTNN:B=2

CÒN GTLN CÂU B KO TIM ĐƯỢC

        GTNN CÂU A KO TÌM ĐƯỢC

4 tháng 8 2016

a) Có: \(\left|x-2\right|\ge0\)

\(\left|x-10\right|\ge0\)

\(\Rightarrow\left|x-2\right|+\left|x-10\right|+4\ge4\)

Xét \(\orbr{\begin{cases}x-2=0\Rightarrow x=2\Rightarrow A=0+8+4=12\\x-10=0\Rightarrow x=10\Rightarrow A=8+0+4=12\end{cases}}\)

Vậy \(Min_A=12\) tại \(x=2\) hoặc \(10\)

4 tháng 8 2016

b) Có: \(\left|x-1\right|\ge0\)

\(\left|x-2\right|\ge0\)

\(\left|x-3\right|\ge0\)

\(\Rightarrow B\ge0\)

Xét: \(\hept{\begin{cases}x-1=0\Rightarrow x=1\Rightarrow B=0+1+2=3\\x-2=0\Rightarrow x=2\Rightarrow B=1+0+1=2\\x-3=0\Rightarrow x=3\Rightarrow B=2+1+0=3\end{cases}}\)

Vậy \(Min_B=2\) tại \(x=2\)

18 tháng 3 2021

\(A=\left(x+2\right)^2+\left|x+2\right|+15\)

Ta có:

\(\left(x+2\right)^2\ge0\forall x\)

\(\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)

\(\Rightarrow A\ge15\)Dấu bằng xảy ra.

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy \(minA=15\Leftrightarrow x=-2\)

11 tháng 10 2017

Ta có: \(A=\left|x-1999\right|+\left|x-9\right|=\left|1999-x\right|+\left|x-9\right|\ge\left|1999-x+x-9\right|=1990\)

Dấu "=" xảy ra khi \(\left(1999-x\right)\left(x-9\right)\ge0\Leftrightarrow9\le x\le1999\)

Vậy MinA = 1990 khi \(9\le x\le1999\)