K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

a) \(\Leftrightarrow x^2-2xy+y^2+y^2-4y+4+1\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

 vậy Min=1 khi x-y =0 , y-2 = 0 <=> x=y,y=2=>x=y=2

|Mấy câu sau tương tự nếu ko biết thì nói nha

,

26 tháng 8 2020

F = 5x2 + 2y2 + 4xy - 2x + 4y + 8

F = ( 4x2 + 4xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 3

F = ( 2x + y )2 + ( x - 1 )2 + ( y + 2 )2 + 3

\(\hept{\begin{cases}\left(2x+y\right)^2\\\left(x-1\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinF = 3 <=> x = 1 , y = -2

G = 5x2 + 5y2 + 8xy + 2y + 2020

= x2 + ( 4x2 + 8xy + 4y2 ) + ( y2 + 2y + 1 ) + 2019

= x2 + ( 2x + 2y )2 + ( y + 1 )2 + 2019

\(\hept{\begin{cases}x^2\\\left(2x+2y\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow x^2+\left(2x+2y\right)^2+\left(y+1\right)^2+2019\ge2019\forall x,y\)

Tuy nhiên đẳng thức không xảy ra :P

7 tháng 9 2021

\(x^2+4y^2-5x+10y-4xy+20\)

\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)

\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)

\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được : 

\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)

7 tháng 9 2021

\(B=x^2-2xy-2x+2y+y^2\)

\(=x^2-2xy+y^2-2\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được : 

\(=1-2=-1\)

1 tháng 5 2018

A \(=\) x\(^2\) +2y\(^2\) - 2xy- 4y + 5

\(=\) ( x\(^2\) + y\(^2\) - 2xy ) + ( y\(^2\) - 4y + 4 ) + 1

\(=\) ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1

Vì ( x + y )\(^2\) và ( y - 2 )\(^2\) > 0 ∀ x và y

Nên ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1 > 1 ∀ x và y

Vậy A có giá trị nhỏ nhất là 1 khi

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\text{x + y =0}\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)

B = 5x\(^2\) + 8xy + 5y\(^2\) - 2x = 2y ???

Đề bài câu B sai

4 tháng 5 2018

Mình ghi sai đề

B=5x2 +8xy + 5y2 - 2x +2y mới đúng

30 tháng 7 2016

D= 5x^2+8xy+5y^2-2x+2y  

=4x^2+8xy+4y^2-2x+2y+y^2+x^2

=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2

(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2

suy ra D>=-1/2 nên D có GTNN là -1/2

30 tháng 7 2016

Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y

5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1  

5D = ( 5x + 4y - 1)2 + 9 (y + 1)- 2

D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1) -  \(\frac{2}{5}\)  \(\ge\)\(\frac{-2}{5}\)

Dấu "=" xảy ra khi y+1 = 0  \(\Leftrightarrow\)y = -1

                          5x + 4y - 1 = 0  \(\Leftrightarrow\)x=1

Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1

15 tháng 7 2016

Bài 1:

A=x2 +y2 -2x-2y+2xy+5

=x2 +y2 -2x-2y+2xy+1+4

=xy+x2-x+xy+y2-y-y-x+1+4

=x(x+y-1)+y(x+y-1)-1(x+y-1)

=(x+y-1)(x+y-1)

=(x+y-1)2+4.Với x+y=3

=>A=(3-1)2+4=22+4=8

Bài 2:

B=x^2 +4y^2-2x-4y-4xy+10

=-2xy+x2-x-2xy+4y2+2y-x+2y+1-8y+9

=x(x-2y-1)-2y(x-2y-1)-1(x-2y-1)-8y+9

=(x-2y-1)(x-2y-1)-8y+9

=(x-2y-1)2-8y+9

Với x-2y=5.Ta có:... tự thay

Bài 3: chịu

10 tháng 7 2017

a) x2 + 2y2 - 2xy + 8y + 7
= x2 - 2xy + y2 + y2 + 8y + 16 - 9
= (x - y)2 + (y + 4)2 - 9
GTNN của biểu thức trên là -9

b) 5x2 + y2 + 2xy - 12x - 18
= x2 + 2xy + y2 + 4x2 - 12x + 9 - 27
= (x + y)2 + (2x - 3)2 - 27
GTNN của biểu thức trên là -27

c) 3x2 + 4y2 + 4xy + 2x - 4y + 26
= 2x2 + 4xy + 2y2 + x2 + 2x + 1 + 2y2 - 4y + 2 + 23
= (\(\sqrt{2}\)x + \(\sqrt{2}\)y)2 + (x + 1)2 + 23
GTNN của biểu thức trên là 23

Câu d mình ko biết làm

10 tháng 7 2017

d) D= 5x^2+9y^2-12xy+24x-48y+82

\(=4x^2+9y^2+64-12xy+32x-48y+x^2-8x+16+2\)

\(=\left[\left(2x\right)^2+\left(3y\right)^2+8^2-2.2x.3y+2.2x.8-2.3y.8\right]+\left(x^2-2.x.4+4^2\right)+2\)

\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)

Vậy GTNN của D là 2 tại \(\hept{\begin{cases}\left(2x-3y+8\right)^2=0\\\left(x-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}}\)

a: A=x^2-2xy+y^2+y^2-4y+4+1

=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2

b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2

=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2

Dấu = xảy ra khi x=1 và y=-1

14 tháng 8 2023

có lời giải chi tiết ko ạ

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1