K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)

Xét ΔABC có \(\widehat{ACB}>\widehat{BAC}\)

mà AB,BC lần lượt là cạnh đối diện của các góc ACB,BAC

nên AB>BC

b: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: ΔAMB=ΔAMC

=>\(\widehat{MAB}=\widehat{MAC}\)

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

=>AE=AF

Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

nên EF//BC

1
29 tháng 2

a)35/50

b)24/42

c)275/250

d)21/30

11 tháng 1

Đổi 30 phút = 0,5 giờ

    Quãng sông từ A đến B dài là:

        \(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)

Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)

29 tháng 2

30=0,5 giờ

ta có biểu thức:

0,5x+1y

AH
Akai Haruma
Giáo viên
31 tháng 1

Lời giải:

Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$

Hình 1: Hình không rõ ràng. Bạn xem lại.

Hình 2: $x+x+120^0=180^0$

$2x+120^0=180^0$

$2x=60^0$

$x=60^0:2=30^0$

Hình 3:

$2y+y+90^0=180^0$

$3y=180^0-90^0=90^0$

$y=90^0:3=30^0$

 

1
25 tháng 1

\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)

Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:

\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)

\(\dfrac{9y^2}{25}-y^2=-4\)

\(-\dfrac{16}{25}y^2=-4\)

\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)

\(y^2=\dfrac{25}{4}\)

\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)

*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)

*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)

Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:

\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 1

Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$

a.

$x=180^0-80^0-45^0=55^0$

b.

$y=180^0-30^0-90^0=60^0$

c.

$z=180^0-30^0-25^0=125^0$