Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)999x1001=(1000-1)(1000+1)=10002-12=1000000-1=999999
b)bạn viết đúng đề câu b k thế?
Bài 3:
a) \(A=\left(2xy^2\right)\left(x^3-2xy+2y^2\right)\)
\(A=2xy^2\cdot x^3-2xy^2\cdot2xy+2xy^2\cdot2y^2\)
\(A=2x^4y^2-4x^2y^3+4xy^4\)
b) \(B=\left(x^2+y^2-z^2\right)\left(x^2+y^2+z^2\right)\)
\(B=x^2\cdot x^2+x^2\cdot y^2+x^2\cdot z^2+x^2\cdot y^2+y^2\cdot y^2+y^2\cdot z^2-x^2\cdot z^2-y^2\cdot z^2-z^2\cdot z^2\)
\(B=x^4+x^2y^2+x^2z^2+x^2y^2+y^4+y^2z^2-x^2z^2-y^2z^2-z^4\)
\(B=x^4+\left(x^2y^2+x^2y^2\right)+\left(x^2z^2-x^2z^2\right)+y^4+\left(y^2z^2-y^2z^2\right)-z^4\)
\(B=x^4+y^4-z^4+2x^2y^2\)
c) \(C=-\dfrac{1}{4}xy\left(4x^2y^2-x^2y-\dfrac{4}{5}\right)\)
\(C=-\dfrac{1}{4}xy\cdot4x^2y^2+\dfrac{1}{4}xy\cdot x^2y+\dfrac{1}{4}xy\cdot\dfrac{4}{5}\)
\(C=-x^3y^3+\dfrac{1}{4}x^3y^2+\dfrac{1}{5}xy\)
d) \(D=\left(x-y\right)^4\)
\(D=\left[\left(x-y\right)^2\right]^2\)
\(D=\left(x^2-2xy+y^2\right)^2\)
\(D=\left(x^2-2xy+y^2\right)\left(x^2-2xy+y^2\right)\)
\(D=x^4-2x^3y+x^2y^2-2x^3y+4x^2y^2-2xy^3+x^2y^2-2xy^3+y^4\)
\(D=x^4+6x^2y^2+y^4\)
4/
a/ \(A=\dfrac{7y^5z^2-14y^3z^4+2,1y^4z^3}{-7y^3z^2}=\dfrac{7y^5z^2}{-7y^3z^2}+\dfrac{-14y^3z^4}{-7y^3z^2}+\dfrac{2,1y^4z^3}{-7y^3z^2}=-y^2+2z^2-0,3yz\)
b/ \(A=\dfrac{9x^3y+3xy^3-6x^2y^2}{-3xy}=\dfrac{9x^3y}{-3xy}+\dfrac{3xy^3}{-3xy}+\dfrac{-6x^2y^2}{-3xy}=-3x^2-y^2+2xy\)
cô làm rồi em ơi https://olm.vn/cau-hoi/bai-3-tu-giac-abcd-co-goc-c-goc-d-90-do-chung-minh-rang-ac2-bd-ab2cd2.8140260328277
a, \(\dfrac{2^3-x^3}{x\left(x^2+2x+4\right)}\) = \(\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}\) = \(\dfrac{2-x}{x}\)=\(\dfrac{x-2}{-x}\)(đpcm)
b, \(\dfrac{-3x\left(x-y\right)}{y^2-x^2}\) (\(x\) \(\ne\) \(\pm\) y)
= \(\dfrac{-3x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
= \(\dfrac{3x\left(y-x\right)}{\left(y-x\right)\left(y+x\right)}\)
= \(\dfrac{3x}{x+y}\) (đpcm)
\(15x^2y^5-10x^3y^4=5x^2y^4\left(3y-2x\right)\)
\(4x\left(x-2y\right)+7\left(2y-x\right)=4x\left(x-2y\right)-7\left(x-2y\right)=\left(x-2y\right)\left(4x-7\right)\)
\(5x^3+20x^2y+20xy^2=5x\left(x^2+4xy+4y^2\right)=5x\left(x+2y\right)^2\)
\(x^2-4y^2-2x+4y=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)=\left(x-2y\right)\left(x+2y-2\right)\)
Bài 3 :
\(BC=HC+HB=16+9=25\left(cm\right)\)
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)
\(\Rightarrow AB=15\left(cm\right)\)
\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)
Bài 6:
\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)
\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC)
\(BC=BH+HC=2+2=4\left(cm\right)\)
Chu vi Δ ABC :
\(4+4+4=12\left(cm\right)\)
a) \(\sqrt{169}=13\) và \(\sqrt{196}=14\)
bài 3 :
a) \(A=\frac{\sqrt{72}}{\sqrt{2}}+2\frac{\sqrt{27}}{\sqrt{3}}-3\frac{\sqrt{28}}{\sqrt{63}}=\frac{22}{3}\)tương tự
4: \(D=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(A=\left(x^2-6x+9\right)-7=\left(x-3\right)^2-7\ge7\\ A_{min}=7\Leftrightarrow x=3\\ B=\left(9x^2+6x+1\right)-4=\left(3x+1\right)^2-4\ge-4\\ B_{min}=-4\Leftrightarrow x=-\dfrac{1}{3}\\ C=\left(x^2-2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\\ C_{min}=-\dfrac{9}{4}\Leftrightarrow x=\dfrac{5}{2}\\ D=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ D_{min}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(E=3\left(x^2+2\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x+\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\\ E_{min}=-\dfrac{4}{3}\Leftrightarrow x=-\dfrac{1}{3}\\ F=x^2-2x+1+x^2-4x+4+2021\\ F=2\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{4031}{2}=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{4031}{2}\ge\dfrac{4031}{2}\\ F_{min}=\dfrac{4031}{2}\Leftrightarrow x=\dfrac{3}{2}\)