Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ukm
bài này em làm đc những ý nào rôi
để ah hướng dẫn những ý còn lại
b)Tứ giác AMCN có I là trung điểm của 2 đường chéo AC và NM
=>AMCN là hbh
Mặt khác : Tam giác ABC cân tại A có trung tuyến AM nên AM vừa là đường trung tuyến , đường trung trực , vừa là đường cao ứng với cạnh đáy BC
=>AM vuông góc với BC
=>AMCN là hcn (đpcm)
c)Vì AKMI là h thoi (cmt)
=>AK=NI và AK//NI
=>AKNI là hbh =>AN//KI và AN=KI (1)
Mặt khác :KI là đường trung bình của tam giác ABC(cmt)
=>KI =1/2BC và KI//BC
=>KI=BM và KI//BM (2)
Từ (1)(2) =>AN=BM và AN//BM =>ANBM là hbh
Nên 2 đường chéo AM và BN sẽ cắt nhau tại trung điểm mỗi đường
Mà E là trung điểm của AM (gt)
=>Elaf trung điểm của BN (đpcm)
c) GỢI Ý :
Để AMCN là h vuông thì tam giác ABC vuông cân tại A
(phần chứng minh thì bạn tự làm naaaaa !!! )
câu 1
a) ta có MF // AB,BA vuông góc AC=> MF vuông góc AC=> MFA=90 độ
tương tự góc EAF=90 độ
tứ giác AEMF có góc EAF=MFA=AEM =90 độ=> tứ giác AEMF là hcn
b) tam giác ABC co AM la T tuyến ung voi canh huyền BC=> AM=1/2BC,MC=1/2BC=> AM=MC=> tam giác AMC cân tai M
=> MF là T tuyến => Flà tđ cua AC
xét tam giác MAC=> DF là đtb cua tam giác AMC => DF//AM=> DF//OM (1)
tương tự OF // MD (2)
từ (1),(2) => T giác OMDF là hbh (3)
ta lai co OM=1/2AM,MD=1/2MC mà AM=MC => OM=DM (4)
từ (3),(4) => T giác OMDF la hình thoi
c) ta có tam giác ABC vuông can tai A=> góc BCA=45 độ
mà góc BCA= MAC=góc MAC =45 dộ=> tam giác MFA vuông can tai F
áp dung Pitago => AF=2 căn 2 cm, ma AF=FM=> AF=FM=2 căn 2 cm
diện tích AEMF=AF.FM=2cAn 2.2can 2=8 cm vuông