![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=5x-x^2=-\left(x^2-5x\right)=-\left[x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{5}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\left(x\in R\right)\)
Vậy \(Max_A=\frac{25}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
\(B=x-x^2=-\left(x^2-x\right)=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}^2\right)+\frac{1}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\left(x\in R\right)\)
Vậy \(Max_B=\frac{1}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2-7\right)=-\left(x-2\right)^2+7\)
Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-2\right)^2+7\le7\left(x\in R\right)\)
Vậy \(Max_C=7\)khi \(x-2=0\Leftrightarrow x=2\)
\(D=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+3^2+2\right)=-\left(x-3^2\right)-2\)
Vì \(\left(x-3\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-3\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-3\right)^2-2\le-2\left(x\in R\right)\)
Vậy \(Max_D=-2\)khi \(x-3=0\Leftrightarrow x=3\)
\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+2.x.4+4^2-21\right)=-\left(x+4\right)^2+21\)
Vì \(\left(x+4\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x+4\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x+4\right)^2+21\le21\left(x\in R\right)\)
Vậy \(Max_E=21\)khi \(x+4=0\Leftrightarrow x=-4\)
F= \(4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-2.x.2+2^2-5\right)=-\left(x-2\right)^2+5\)
Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-2\right)^2+5\le5\left(x\in R\right)\)
Vậy \(Max_F=5\)khi \(x-2=0\Leftrightarrow x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=x^2-2\times x\times\frac{7}{2}+\frac{49}{4}-\frac{49}{4}+15\)
\(B=\left(x-\frac{7}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
GTNN của B = 11/4 khi \(x=\frac{7}{2}\)
Bạn thử sử dụng hằng đẳng thức xem : (X-\(\frac{7}{2}\))\(^2\)+ \(\frac{11}{4}\)\(\ge\)\(\frac{11}{4}\)
vậy GTNN của biểu thức là B=\(\frac{11}{4}\) Khi X=\(\frac{7}{2}\)
(Mình nghĩ đáp án là như vậy)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
![](https://rs.olm.vn/images/avt/0.png?1311)
a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1
=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1
=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)
=(x2+x+1)(x5-x4+x3-x+1)
b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1
=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)
=(2x2-6x+1)(2x2+6x+1)
c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)
d)3(x4+x2+1)-(x2+x+1)
=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2
=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)
=(x2+x+1)(3x2-3x+2)
e)bạn tự làm nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
1/\(9x^2+6x-575=\left(3x\right)^2+2.3x.1+1-576=\left(3x+1\right)^2-24^2=\left(3x-23\right)\left(3x+25\right)\)
2/\(81x^4+4=81x^4+36x^2+4-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)
3/đặt \(t=x^2+8x+7\) thì đa thức cần phân tích:
t(t+8)+15=t2+8t+15=t2+3t+5t+15=t(t+3)+5(t+3)=(t+3)(t+5)=(x2+8x+10)(x2+8x+12)=(x2+8x+10)(x2+2x+6x+12)
=(x2+8x+10)[x(x+2)+6(x+2)]=(x2+8x+10)(x+2)(x+6)
tạm thế này đã, phải đi ăn cơm rồi :v
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a) Ta có : x2 - 9x + 8 = x2 - x - 8x + 8 = x(x - 1) - 8(x - 1) = (x - 8)(x - 1)
b) Ta có : x2 + 6x + 8 = x2 + 6x + 9 - 1 = (x + 3)2 - 1 = (x + 3 - 1)(x + 3 + 1) = (x + 2)(x + 4)
Bài 2 :
b) 4x2 - 25 = 0
=> 4x2 = 25
=> (2x)2 = 52
=> 2x = -5;5
=> x = -5/2 ; 5/2
b) = x^2 + 2.x.3 + 3^2 - 1
=(x + 3)^2 - 1
=(x + 3 + 1)(x + 3 - 1)
=(x + 4)(x + 2)
Phần a mk nghĩ bn nên tự lm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4.
1) ( x + 3 )( x2 - 3x + 9 ) - x( x2 - 3 ) = 8( 5 - x )
<=> x3 + 27 - x3 + 3x = 40 - 8x
<=> 27 + 3x = 40 - 8x
<=> 3x + 8x = 40 - 27
<=> 11x = 13
<=> x = 13/11
2) ( 2x + 1 )3 + ( 2x + 3 )3 = 0
<=> [ ( 2x + 1 ) + ( 2x + 3 ) ][ ( 2x + 1 )2 - ( 2x + 1 )( 2x + 3 ) + ( 2x + 3 )2 ] = 0
<=> ( 2x + 1 + 2x + 3 )[ 4x2 + 4x + 1 - ( 4x2 + 8x + 3 ) + 4x2 + 12x + 9 ] = 0
<=> ( 4x + 4 )( 8x2 + 16x + 10 - 4x2 - 8x - 3 ) = 0
<=> ( 4x + 4 )( 4x2 + 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}4x+4=0\\4x^2+8x+7=0\end{cases}}\)
+) 4x + 4 = 0
<=> 4x = -4
<=> x = -1
+) 4x2 + 8x + 7 = 0 (*)
Ta có 4x2 + 8x + 7 = ( 4x2 + 8x + 4 ) + 3 = ( 2x + 2 )2 + 3 ≥ 3 > 0 ∀ x
=> (*) không xảy ra
Vậy x = -1
Bài 5.
1) A = x2 - 2x + 2 = ( x2 - 2x + 1 ) + 1 = ( x - 1 )2 + 1 ≥ 1 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 1 <=> x = 1
2) A = 4x2 + 4x + 5 = ( 4x2 + 4x + 1 ) + 4 = ( 2x + 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinA = 4 <=> x = -1/2
3) A = 2x2 + 3x + 3 = 2( x2 + 3/2x + 9/16 ) + 15/8 = 2( x + 3/4 )2 + 15/8 ≥ 15/8 ∀ x
Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MinA = 15/8 <=> x = -3/4
4) A = 3x2 + 5x = 3( x2 + 5/3x + 25/36 ) - 25/12 = 3( x + 5/6 )2 - 25/12 ≥ -25/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
=> MinA = -25/12 <=> x = -5/6
5) B = 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 12
=> MaxB = -3 <=> x = 1
6) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxB = 4 <=> x = -2
7) B = 3x - 2x2 - 2 = -2( x2 - 3/2x + 9/16 ) - 7/8 = -2( x - 3/4 )2 - 7/8 ≤ -7/8 ∀ x
Đẳng thức xảy ra <=> x - 3/4 = 0 => x = 3/4
=> MaxB = -7/8 <=> x = 3/4
8) B = x( 3 - x ) = -x2 + 3x = -( x2 - 3x + 9/4 ) + 9/4 = -( x - 3/2 )2 + 9/4 ≤ 9/4 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 9/4 <=> x = 3/2
9) A = ( x - 1 )( x + 1 )( x + 2 )( x + 4 )
= [ ( x - 1 )( x + 4 ) ][ ( x + 1 )( x + 2 ) ]
= ( x2 + 3x - 4 )( x2 + 3x + 2 ) (*)
Đặt t = x2 + 3x - 4
(*) <=> t( t + 6 )
= t2 + 6t
= ( t2 + 6t + 9 ) - 9
= ( t + 3 )2 - 9
= ( x2 + 3x - 4 + 3 )2 - 9
= ( x2 + 3x - 1 )2 - 9 ≥ -9 ∀ x
=> MinA = -9 ( chỗ này mình không xét giá trị của x vì nghiệm nó xấu lắm '-' )
x^2 - 4x = 15
x.x - 4x = 15
x(x - 4) = 15
Đến đây mk không biết làm nữa, bạn tìm nghiệm = máy tính cầm tay nhé
Mình làm được r bạn ạ,cảm ơn bn nha ^^