Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Chứng tỏ các phân số sau tối giản với mọi n thuộc N
a,n+3/n+4
Để phân số \(\dfrac{n+3}{n+4}\) tối giản thì [n+3;(n+4)] là hai số nguyên tố cùng nhau thì:
[n+3;(n+4)]=1
Gọi d là ước chung lớn nhất[n+3;(n+4)]
\(\Rightarrow\) [n+3;(n+4)]=d
\(\Rightarrow\) n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d
\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d
\(\Rightarrow\) [n+4;(n+3)]\(⋮\)d\(\Rightarrow\)[n+4-n-3]\(⋮\)d=>-1\(⋮\)d=>d=1
Nên n+4;n+3 là hai số nguyên tố cùng nhau
Vậy \(\dfrac{n+3}{n+4}\) là phân số tối giản
a) Gọi \(d\)là ước chung của \(n+3;n+4\)
\(\Rightarrow n+3⋮d\)và \(n+4⋮d\)
\(\Rightarrow n+3-\left(n+4\right)⋮d\)
\(\Rightarrow n+3-n-4⋮d\)
\(\Rightarrow-1⋮d\Rightarrow d=-1;1\)
Tử và mẫu chỉ có ước chung là -1;1 nên phân số \(\frac{n+3}{n+4}\)là phân số tối giản (đpcm)
Gọi \(d=ƯCLN\left(n+5;n+6\right)\)
\(\Leftrightarrow\hept{\begin{cases}n+5⋮d\\n+6⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\LeftrightarrowƯCLN\left(n+5;n+6\right)=1\)
Vậy phân số \(\frac{n+5}{n+6}\) là phân số tối giản
các câu còn lại tương tự nhé b!
chúc b hc tốt
a ) Gọi ƯCLN ( n , n + 1 ) , d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)ƯCLN \(\left(n,n+1\right)=1\)
\(\Rightarrow\frac{n}{n+1}\)là phân số tối giản .
a) Gọi d là ƯCLN (n;n+1)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> đpcm
b) Gọi d là ƯCLN (2n+5;n+2)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+5⋮d\\2n+4⋮d\end{cases}}}\)
=> 2n+5-2n-4 chia hết cho d
=> 1 chia hết cho d
=> d=1
=> đpcm
c) Gọi d là ƯCLN (n+1;3n+2)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow}1⋮d}\)
=> d=1
=> đpcm
Bài 1:
a; A = \(\dfrac{2n+1}{2n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 2n + 1 và 2n + 2 là d
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)
⇒ 2n + 2 - 2n - 1 ⋮ d
(2n - 2n) + (2 - 1) ⋮ d
1 ⋮ d
d = 1
Vậy ước chung lớn nhất của 2n + 1 và 2n + 2 là 1
Hay A = \(\dfrac{2n+1}{2n+2}\) là phân số tối giản với mọi giá trị của số tự nhiên n.
Bài 1b
B = \(\dfrac{2n+3}{3n+5}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 2n + 3 và 3n + 5 là d ta có:
\(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3.\left(2n+3\right)⋮d\\2.\left(3n+5\right)⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
6n + 10 - 6n - 9 ⋮ d
(6n - 6n) + (10 - 9) ⋮ d
1 ⋮ d
d = 1
Ước chung lớn nhất của 2n + 3 và 3n + 5 là 1
Hay B = \(\dfrac{2n+3}{3n+5}\) là phân số tổi giản với mọi số tự nhiên n
1) Gọi d là ƯCLN (2n+5; n+3) ( d thuộc N*)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+5⋮d\\2\left(n+3\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}}}\)
<=> (2n+6)-(2n+5) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d=1
=> đpcm
1) \(C=\frac{2n+5}{n+3}\left(n\ne-3\right)\)
Để C=\(\frac{7}{4}\Rightarrow\frac{2n+5}{n+3}=\frac{7}{4}\)
<=> 4(2n+5)=7(n+3)
<=> 8n+20=7n+21
<=> 8n+20-7n-21=0
<=> n-1=0
<=> n=1 (tmđk)