K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

\( a)\left( {a + b - c} \right) + \left( {b + c - a} \right) + \left( {a + c - b} \right)\\ = a + b - c + b + c - a + a + c - b\\ = a + b + c\\ b)\left( {a - b} \right) + \left( {b - c + a} \right) + \left( {c - b} \right)\\ = a - b + b - c + a + c - b\\ = 2a + b\\ c)\left( {2a - b + c} \right) + \left( {b - c + a} \right) + \left( {c - 2a + b} \right)\\ = 2a - b + c + b - c + a + c - 2a + b\\ = a + b + c\\ d)\left( {a - c + b} \right) + \left( {b - c - a} \right) - a - b - c\\ = a - c + b + b - c - a - a - b - c\\ = - a - b - 3c \)

18 tháng 3 2020

a) (a + b - c) + (b + c - a) + (a +​c - b)

= a + b - c + b + c - a + a + c - b

= (a - a + a) + (b - b + b) + (c - c + c)

= a + b + c

b) (a - b) + (b - c + a) + (c - b)

= a - b + b - c + a + c - b

= (a + a) + (b - b - b) + (c - c)

= 2a - b

c) (2a - b + c) + (b - c + a) + (c - 2a + b)

= 2a - b + c + b - c + a + c - 2a + b

= (2a - 2a) + (b - b + b) + (c - c + c)

= b + c

d) (a - c + b) + (b - c - a) - a - b - c

= a - c + b + b - c - a - a - b - c

= (a - a - a) + (b + b - b) - (c + c + c)

= b - 2a - 3c

Chúc bạn học tốt@@

10 tháng 6 2015

L+L+L+C+C+L+C+L+C+C+L+C+C=M

10 tháng 6 2015

L + L +L + C + C +L+C +L + C +C + L + C + C=M

 

a, \(\left(a-b\right)+\left(c-d\right)=\left(a+c\right)-\left(b+d\right)\)

\(a-b+c-d=a+c-b-d\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

b, \(\left(a-b\right)-\left(c-d\right)=\left(a+d\right)-\left(b+c\right)\)

\(a-b-c+d=a+d-b-c\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

c, \(a-\left(b-c\right)=\left(a-b\right)+c=\left(a+c\right)-b\)

\(a-b+c=a-b+c=a+c-b\)

\(\Rightarrowđpcm\)

d, \(\left(a-b\right)-\left(b+c\right)+\left(c-a\right)-\left(a-b-c\right)=-\left(a+b-c\right)\)

\(a-b-b-c+c-a-a+b+c=-a-b+c\)

\(-a-b+c=-a-b+c\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

e, \(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)

\(a-b-c+b+c-1=b-c+6-7+a-b+c\)

\(a-1=-1+a\Rightarrow a-1=a+\left(-1\right)\Rightarrow a-1=a-1\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

25 tháng 3 2020

a) a(b-c)+c(a-b)=ab-ac+ca-cb=ab-cb=b(a-c)

b) a(b-c)-b(a+c)=ab-ac-ab-bc=-ac-bc=-c(a+b)

c) a(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)

d) a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(a+d)

25 tháng 3 2020

a) a(b - c) + c(a - b) = ab - ac + ac - bc = ab - bc = b(a - c)

b) a(b - c) - b(a + c) = ab - ac - ab - bc = -ac - bc = (a + b). (-c)

c) a(b + c) - b(a - c) = ab + ac - ab + bc = ac + bc = (a + b)c

d) a(b - c) - a(b + d) = ab - ac - ab - ad = -ac - ad = -a(c + d)

7 tháng 12 2017

Ta có:

A=a-b+a+b-c-a+b+c

=a+b

B=a-b-b+c+c-a-a+b+c=3c-a-b

C=(-a+b+c)-(a-b+c)-(-a+b-c)=-a+b+c-a+b-c+a-b+c=-a+b+c

7 tháng 1 2018

a)-b+c

d)-2a-2c

e)2b-2c

b)-2a+b

c)-a+c

f)a

-a-b+a+c=-b+c

-a+b-c-a-b-c=-2a-2c

a+b-a-b+a-c-a-c=-2c

-a-c+a-b-c=-2c+b

b-b-a+c=-a+c

a+b-c+a-b+c-b+c-a-a+b+c=2c

Ta có: a=2b=3c

=>a/6=b/3=c/2

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{6}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a+b+c}{6+3+2}=\dfrac{180}{11}\)

Do đó: a=1080/11; b=540/11; c=360/11