K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

\(C=tan5\cdot tan85\cdot tan10\cdot tan80\cdot...\cdot tan40\cdot tan50\cdot tan45\)

\(=tan5\cdot cot5\cdot tan10\cdot cot10\cdot...\cdot tan40\cdot cot40\cdot1\)

\(=1\cdot1\cdot...\cdot1\)

=1

31 tháng 3 2018

\(A=\sin\left(90+85\right)^0.\tan\left(85\right)^0+\cos\left(180+5\right)^0\)

\(A=\cos\left(85\right)^0.\tan\left(85\right)^0-\cos\left(5\right)^0\)

\(A=sin85^0-cos5^0\)

\(A=sin\left(90-5\right)^0-cos5^0\)

\(A=cos5^0-cos5^0=0\)

NV
19 tháng 2 2020

\(0< 15^0< 90^0\Rightarrow sin,cos,tan\) đều dương

\(cos15=\sqrt{1-sin^215}=\sqrt{1-\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^2}=\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(tan15=\frac{sin15}{cos15}=2+\sqrt{3}\)

\(cot15=\frac{1}{tan15}=2-\sqrt{3}\)

22 tháng 8 2022

sao cos bình 15 lại = căn 1- sin bình 15 ạ

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\cos {0^o} = 1;\;\cos {120^o} =  - \frac{1}{2}\)

Lại có: \(\cos {140^o} =  - \cos \left( {{{180}^o} - {{40}^o}} \right) =  - \cos {40^o}\)  

\(\begin{array}{l} \Rightarrow A = 1 + \cos {40^o} + \left( { - \frac{1}{2}} \right) - \cos {40^o}\\ \Leftrightarrow A = \frac{1}{2}.\end{array}\)

b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\sin {150^o} = \frac{1}{2};\;\sin {180^o} = 0\)

Lại có: \(\sin {175^o} = \sin \left( {{{180}^o} - {{175}^o}} \right) = \sin {5^o}\)  

\(\begin{array}{l} \Rightarrow B = \sin {5^o} + \frac{1}{2} - \sin {5^o} + 0\\ \Leftrightarrow B = \frac{1}{2}.\end{array}\)

c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)

Ta có: \(\sin {75^o} = \cos\left( {{{90}^o} - {{75}^o}} \right) = \cos {15^o}\); \(\sin {55^o} = \cos\left( {{{90}^o} - {{55}^o}} \right) = \cos {35^o}\)

\(\begin{array}{l} \Rightarrow C = \cos {15^o} + \cos {35^o} - \cos {15^o} - \cos {35^o}\\ \Leftrightarrow C = 0.\end{array}\)

d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)

Ta có: \(\tan {115^o} =  - \tan \left( {{{180}^o} - {{115}^o}} \right) =  - \tan {65^o}\)

Mà: \(\tan {65^o} = \cot \left( {{{90}^o} - {{65}^o}} \right) = \cot {25^o}\)

\(\begin{array}{l} \Rightarrow D = \tan {25^o}.\tan {45^o}.(-\cot {25^o})\\ \Leftrightarrow D =- \tan {45^o} = -1\end{array}\)

e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)

Ta có: \(\cot {100^o} =  - \cot \left( {{{180}^o} - {{100}^o}} \right) =  - \cot {80^o}\)

Mà: \(\cot {80^o} = \tan \left( {{{90}^o} - {{80}^o}} \right) = \tan {10^o}\Rightarrow \cot {100^o}  =- \tan {10^o}\)

\(\begin{array}{l} \Rightarrow E = \cot {10^o}.\cot {30^o}.(-\tan {10^o})\\ \Leftrightarrow E = -\cot {30^o} =- \sqrt 3 .\end{array}\)

25 tháng 3 2022

undefinedđúng ko v ???????

25 tháng 3 2022

25 tháng 3 2022

đúng ko ạ

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)

Ta có: \(\left\{ \begin{array}{l}\sin {45^o} = \cos {45^o} = \frac{{\sqrt 2 }}{2};\;\\\sin {30^o} = \frac{1}{2}\end{array} \right.\)

Thay vào M, ta được: \(M = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = \frac{2}{4} + \frac{1}{2} = 1\)

b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)

Ta có: \(\sin {60^o} = \frac{{\sqrt 3 }}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\sin {45^o} = \frac{{\sqrt 2 }}{2};\, \cos {45^o}= \frac{{\sqrt 2 }}{2}\)

Thay vào N, ta được: \(N = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{3}{4} + \frac{1}{4} = 1\)

c) \(P = 1 + {\tan ^2}{60^o}\)

Ta có: \(\tan {60^o} = \sqrt 3 \)

Thay vào P, ta được: \(Q = 1 + {\left( {\sqrt 3 } \right)^2} = 4.\)

d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)

Ta có: \(\sin {120^o} = \frac{{\sqrt 3 }}{2};\;\;\cot {120^o} = \frac{{ - 1}}{{\sqrt 3 }}\)

Thay vào P, ta được: \(Q = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \;{\left( {\frac{{ - 1}}{{\sqrt 3 }}} \right)^2} = \frac{1}{{\frac{3}{4}}} - \;\frac{1}{3} = \;\frac{4}{3} - \;\frac{1}{3} = 1.\)