K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k

=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k

Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z

30 tháng 12 2018

Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k

=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k

Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z

21 tháng 3 2022

`Answer:`

Mình sửa đề lại thành:  \(F=\left(1+\frac{x}{z}\right)\left(1-\frac{y}{x}\right)\left(1-\frac{z}{y}\right)\)

Theo đề ra, ta có: \(-x+y-z=0\Rightarrow\hept{\begin{cases}y=x+z\\x=y-z\\y-x=z\end{cases}}\left(\text{*}\right)\)

\(F=\left(1+\frac{x}{z}\right)\left(1-\frac{y}{x}\right)\left(1-\frac{z}{y}\right)=\left(\frac{z}{z}+\frac{x}{z}\right)\left(\frac{x}{x}-\frac{y}{x}\right)\left(\frac{y}{y}-\frac{z}{y}\right)=\frac{z+x}{z}.\frac{-\left(y-x\right)}{x}.\frac{y-z}{y}\)

Thay (*) vào `F:` \(F=\frac{y}{z}.\frac{-z}{x}.\frac{x}{y}=-1\)

19 tháng 3 2017

M=(1-z/x)(1-x/y)(1+y/z)

M=[(x-z)/x].[(y-x)/y].[(y+z)/z]

M=y/x . -z/y. x/z(thay x-z=y;y-x=-z;y+z=x)

M=-1

NV
9 tháng 1 2023

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)

11 tháng 12 2023

Ta có: \(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}\left(x,y,z\ne0\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}\)

\(=\dfrac{x+2y-z+y+2z-x+z+2x-y}{z+x+y}\)

\(=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}=2\)

\(\Rightarrow\dfrac{x+2y}{z}-1=\dfrac{y+2z}{x}-1=\dfrac{z+2x}{y}-1=2\)

\(\Rightarrow\dfrac{x+2y}{z}=\dfrac{y+2z}{x}=\dfrac{z+2x}{y}=3\)

\(\Rightarrow\dfrac{x+2y}{z}\cdot\dfrac{y+2z}{x}\cdot\dfrac{z+2x}{y}=3\cdot3\cdot3\)

\(\Rightarrow\dfrac{x+2y}{y}\cdot\dfrac{y+2z}{z}\cdot\dfrac{z+2x}{x}=27\)

\(\Rightarrow\left(\dfrac{x}{y}+2\right)\left(\dfrac{y}{z}+2\right)\left(\dfrac{z}{x}+2\right)=27\)

hay \(P=27\)

Vậy: ...

13 tháng 12 2023

Thanks (´▽`ʃ♡ƪ)