Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: BM=2MC(gt)
nên \(\dfrac{MC}{BM}=\dfrac{1}{2}\)(1)
Ta có: NA=2NC(gt)
nên \(\dfrac{NC}{NA}=\dfrac{1}{2}\)(2)
Từ (1) và (2) suy ra \(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)
Xét ΔCAB có
N∈AC(gt)
M∈BC(gt)
\(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)(cmt)
Do đó: MN//AB(Định lí Ta lét đảo)
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
a) AC = 10cm Þ SABC =37,5 (cm2)
b) Chứng minh được M A E ^ = A M E ^ (cùng = A B C ^ ) Þ AE = ME. Cmtt ta có AE = NE. Từ đó suy ra ME = NE.
c) Chứng minh EH//GF (//MB) và GE//FH (//NC) Þ EGFH là hình bình hành. Chứng minh được H E G ^ = B A C ^ = 90 0 ⇒ E G F H là hình chữ nhật. Suy ra GH đi qua trung điểm của EF.
S E G F H = H E . E G = 1 2 M B . 1 2 N C = 1 4 . 2 3 A B . 2 3 A C = 25 3 ( c m 2 )
Mà S E G F H = 4. S ⇒ I H F S I H F = 25 12 c m 2
a. Ta có CN/NA=CM/MB(=1/2)
⇒NM//AB (theo định lí ta-lét đảo)
b. Ta có GA/GM=GB/GN=AB/MN ( theo hệ quả định lí ta-lét)
Lại có AB/MN=CB/CM=3 (theo hệ quả định lí ta-lét)
Do đó , ta được GA/GM=GB/GN=3
chúc bạn học giỏi,mong là mình đã giúp được bạn
mk ước j bạn có thể làm sớm hơn