\(\frac{1}{1.6}\)+ \(\frac{1}{6.11}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

\(C=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)

\(C=\frac{1}{5}\left(1-\frac{1}{101}\right)\)

\(C=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)

7 tháng 4 2017

\(5C=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\)

\(5C=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\)

\(5C=1-\frac{1}{101}\)

\(C=\frac{100}{\frac{101}{5}}\)

1 tháng 4 2016

ta có : 1/1.6+1/6.11+1/11.16+....+1/96.101

= 1/5.5/1.6+ 1/5.5/6.11+1/5.5/11.16+...+1/5.5/96.101

=1/5 . ( 5/1.6+5/6.11+5/11.16+...+5/96.101)

=1/5 . ( 1/1-1/6 +1/6-1/11+1/11-1/16+....+1/96-1/101)

=1/5 . (1/1-1/101)

=1/5 . 100/101

= 20/101

1 tháng 4 2016

5A=\( 1-{1\over 6}+{1\over 6}-{1\over 11}+...{1\over 96}-{1\over 101}\)

  =\(1- {1 \over 101}={100 \over 101}\)

suy ra A =\({20 \over 101}\)

12 tháng 8 2016

bạn ơi hình như đề sai ở chỗ cuối cùng kia kìa chỗ đó có phải : x . x ( 1 + 5 ) 

Đúng ko bạn ?????

12 tháng 8 2016

Sai đề

20 tháng 1 2017

a)

=\(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}\left(3^5-3^4\right)}{2^{12}\left(3^6+3^5\right)}-\frac{5^{10}\left(7^3-7^4\right)}{5^9.7^3\left(1+2^3\right)}\)

\(=\frac{3^5-3^4}{3^6+3^5}-\frac{5\left(7^3-7^4\right)}{7^3.3^2}\)

=\(\frac{3^4\left(3-1\right)}{^{ }3^4\left(9+3\right)}-\frac{5.7^3-5.7^4}{7^3.3^2}\)

=\(\frac{1}{6}-\frac{7^3.5\left(1-7\right)}{7^3.3^2}=\frac{1}{6}-\frac{30}{9}=-\frac{19}{6}\)

Vậy A=\(-\frac{19}{6}\)

20 tháng 1 2017

câu b lúc nã mk làm sai rui

dây mới đúng

=\(\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)

=\(\frac{1}{5}\left(1-\frac{1}{101}\right)=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)

Ta có: \(A=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{26\cdot31}\)

\(=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{26\cdot31}\right)\)

\(=5\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5\cdot\left(1-\frac{1}{31}\right)=5\cdot\frac{30}{31}=\frac{150}{31}>1\)

hay A>1(đpcm)

15 tháng 9 2016

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Có: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)

 \(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

24 tháng 6 2017

\(\frac{1}{13}+\frac{3}{13\cdot23}+\frac{3}{23\cdot33}+...+\frac{3}{1993\cdot2003}\)

\(=\frac{1}{13}+\left[\frac{3}{13\cdot23}+\frac{3}{23\cdot33}+...+\frac{3}{1993\cdot2003}\right]\)

\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13\cdot23}+\frac{1}{23\cdot33}+...+\frac{1}{1993\cdot2003}\right]\right]\)

\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right]\right]\)

\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13}-\frac{1}{2003}\right]\right]\)

\(=\frac{1}{13}+\left[\frac{3}{10}\cdot\frac{1990}{26039}\right]\)

\(=\frac{1}{13}+\frac{597}{26039}\)

\(=\frac{200}{2003}\)

24 tháng 6 2017

Đặt A= 1/13 + 3/13.23 + 3/ 23.33 + ... + 3/1993.2003 

A- 1/13 = 3/13.23 + 3/ 23.33 + ... + 3/1993.2003 

10/3 ( A-1/3) =  10/3. (3/13.23 + 3/ 23.33 + ... + 3/1993.2003) 

10/3A - 10/9 = 10/13.23 + 10/ 23.33 + ... + 10/1993.2003 

10/3A - 10/9  = 1/13 - 1/23 + 1/23 - 1/33 +...+ 1/1993- 1/2003

10/3A = 1/13 - 1/2003 + 10/9

10/3 A= ? 

đến đây bn tự làm nha

10/3A - 10/9 = 1/13 

15 tháng 8 2017

\(=\frac{8}{9}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)

\(=\frac{8}{9}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-\frac{1}{6}+\frac{1}{7}-\frac{1}{5}+\frac{1}{6}-...-1+\frac{1}{2}\)= 0

Vì \(\frac{1}{n.\left(n+1\right)}=\frac{\left(n+1\right)-n}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)