K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2023

\(C=\dfrac{2x}{x-3}-\dfrac{3x+9}{x^2-9}\)

\(C=\dfrac{2x}{x-3}-\dfrac{3\left(x+3\right)}{x^2-3^2}\)

\(C=\dfrac{2x}{x-3}-\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(C=\dfrac{2x}{x-3}-\dfrac{3}{x-3}\)

\(C=\dfrac{2x-3}{x-3}\)

============================

\(D=\left(\dfrac{15-x}{x^2-25}+\dfrac{2}{x+5}\right):\dfrac{x+1}{x-5}\)

\(D=\left(\dfrac{15-x}{\left(x+5\right)\left(x-5\right)}+\dfrac{2\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}\right):\dfrac{x+1}{x-5}\)

\(D=\left(\dfrac{15-x+2x-10}{\left(x+5\right)\left(x-5\right)}\right):\dfrac{x+1}{x-5}\)

\(D=\left(\dfrac{x+5}{\left(x+5\right)\left(x-5\right)}\right):\dfrac{x+1}{x-5}\)

\(D=\dfrac{1}{x-5}:\dfrac{x+1}{x-5}\)

\(D=\dfrac{1}{x-5}\cdot\dfrac{x-5}{x+1}\)

\(D=\dfrac{1}{x+1}\)

a) \(\left(x+2\right)^2-9=0\)

\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)

\(=>\left(x-1\right).\left(x+5\right)=0\)

\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy x= 1 hoặc x= -5

b) \(x^2-2x+1=25\)

\(=>x^2-2.x.x+1^2=25\)

\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)

\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)

\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)

\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)

Vậy x= 6 hoặc x= -4

c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)

\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)

\(=>4x\left(x-1\right)-4x^2+25-1=0\)

\(=>4x\left(x-1\right)-4x^2+24=0\)

\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)

..................... tắc ròi -.-"

d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)

\(=>x^3+27-x^3-3x=15\)

\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)

Vì \(3>0=>4-x=0=>x=4\)

Vậy x= 4

e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)

\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)

\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)

\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)

\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)

Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'

10 tháng 10 2020

Cảm ơn cậu nhiều nhé!

4 tháng 8 2019

\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow3x+6+2x+2=5x+4\)

\(\Leftrightarrow3x+2x-5x=-6-2+4\)

\(\Leftrightarrow0x=-4\)

=> PT vô nghiệm 

\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)

\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow4x-2-15=9x-3\)

\(\Leftrightarrow4x-9x=2+15-3\)

\(\Leftrightarrow-5x=14\)

.....

4 tháng 8 2019

mấy cái này mẫu nào dài cậu phân tích ra : 

VD : câu  3 : \(3x^2-4x+1\)

\(=3x^2-3x-x+1\)

\(=3x\left(x-1\right)-\left(x-1\right)\)

\(=\left(3x-1\right)\left(x-1\right)\)

r bắt đầu giải PHương trình :)) Mấy câu còn lại tương tự 

24 tháng 8 2020

a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16

x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0

9x - 9 = 0

9x = 9

x = 1

Vậy x ∈ {1}

b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16

x3 + 8 - x3 + 2x - 16 = 0

2x - 8 = 0

2x = 8

x = 4

Vậy x ∈ {4}

c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17

x3 - 25x - x3 - 8 - 17 = 0

-25x - 25 = 0

-25x = 25

x = -1

Vậy x ∈ {1}

d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15

x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0

45x - 6 = 0

45x = 6

x = \(\frac{2}{15}\)

Vậy x ∈ {\(\frac{2}{15}\)}

\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)

\(2x+8=15\)

\(2x=7\)

\(x=\frac{7}{2}\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)

\(\Leftrightarrow9x+7=17\)

\(\Leftrightarrow9x=10\)

\(\Leftrightarrow x=\frac{10}{9}\)

6 tháng 10 2020

a) \(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)

b) \(3x\left(x-2\right)-5x+10=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

c) \(4x\left(x+3\right)-x^2+9=0\)

\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

6 tháng 10 2020

e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)

f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)

g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)

6 tháng 10 2020

a) 4x3 - 9x = 0

<=> x( 4x2 - 9 ) = 0

<=> x( 2x - 3 )( 2x + 3 ) = 0

<=> x = 0 hoặc 2x - 3 = 0 hoặc 2x + 3 = 0

<=> x = 0 hoặc x = ±3/2

b) 3x( x - 2 ) - 5x + 10 = 0

<=> 3x( x - 2 ) - 5( x - 2 ) = 0

<=> ( x - 2 )( 3x - 5 ) = 0

<=> x - 2 = 0 hoặc 3x - 5 = 0

<=> x = 2 hoặc x = 5/3

c) 4x( x + 3 ) - x2 + 9 = 0

<=> 4x( x + 3 ) - ( x2 - 9 ) = 0

<=> 4x( x + 3 ) - ( x - 3 )( x + 3 ) = 0

<=> ( x + 3 )[ 4x - ( x - 3 ) ] = 0

<=> ( x + 3 )( 4x - x + 3 ) = 0

<=> ( x + 3 )( 3x + 3 ) = 0

<=> x + 3 = 0 hoặc 3x + 3 = 0

<=> x = -3 hoặc x= -1

d) ( 2x + 5 )( x - 4 ) = ( x - 4 )( 5 - x )

<=> ( 2x + 5 )( x - 4 ) - ( x - 4 )( 5 - x ) = 0

<=> ( x - 4 )[ ( 2x + 5 ) - ( 5 - x ) ] = 0

<=> ( x - 4 )( 2x + 5 - 5 + x ) = 0

<=> ( x - 4 ).3x = 0

<=> x - 4 = 0 hoặc 3x = 0

<=> x = 4 hoặc x = 0

e) 16x2 - 25 = ( 4x - 5 )( 2x + 1 )

<=> ( 4x - 5 )( 4x + 5 ) - ( 4x - 5 )( 2x + 1 ) = 0

<=> ( 4x - 5 )[ ( 4x + 5 ) - ( 2x + 1 ) ] = 0

<=> ( 4x - 5 )( 4x + 5 - 2x - 1 ) = 0

<=> ( 4x - 5 )( 2x + 4 ) = 0

<=> 4x - 5 = 0 hoặc 2x + 4 = 0

<=> x = 5/4 hoặc x = -2

f) ( x + 1/5 )2 = 64/9

<=> ( x + 1/5 )2 = ( ±8/3 )2

<=> x + 1/5 = 8/3 hoặc x + 1/5 = -8/3

<=> x = 37/15 hoặc x = -43/15

g) 9( x + 2 )2 = ( x + 3 )2

<=> 32( x + 2 )2 - ( x + 3 )2 = 0

<=> [ 3( x + 2 ) ]2 - ( x + 3 )2 = 0

<=> ( 3x + 6 )2 - ( x + 3 )2 = 0

<=> [ ( 3x + 6 ) - ( x + 3 ) ][ ( 3x + 6 ) + ( x + 3 ) ] = 0

<=> ( 3x + 6 - x - 3 )( 3x + 6 + x + 3 ) = 0

<=> ( 2x + 3 )( 4x + 9 ) = 0

<=> 2x + 3 = 0 hoặc 4x + 9 = 0

<=> x = -3/2 hoặc x = -9/4

24 tháng 8 2018

a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left[x^2+2x+7+2\left(x+2\right)-5\right]=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\)

Ta có:

\(x^2+4x+6\)

\(=x^2+2.x.2+4+2\)

\(=\left(x+2\right)^2+2\)

\(\left(x+2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+2\right)^2+2\ge2\) với mọi x

\(\Rightarrow x^2+4x+6\) vô nghiệm

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

b) \(3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

c) \(2\left(x+3\right)x^2-3x=0\)

\(\Rightarrow x\left[2\left(x+3\right)x-3\right]=0\)

\(\Rightarrow x\left(2x^2+6x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2+6x-3=0\end{matrix}\right.\)

Ta có:

\(2x^2+6x-3\)

\(=2\left(x^2+3x-\dfrac{3}{2}\right)\)

\(=2\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}-\dfrac{3}{2}\right)\)

\(=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\)

\(2\left(x+\dfrac{3}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\ge-\dfrac{15}{2}\) với mọi x

\(\Rightarrow2x^2+6x-3\) vô nghiệm

\(\Rightarrow x=0\)

24 tháng 8 2018

Cảm ơn ạ

a) Ta có: (2x-3)(x+2)=0

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};-2\right\}\)

b) Ta có: (3x-1)(2x-5)=(3x-1)(x+2)

\(\left(3x-1\right)\left(2x-5\right)-\left(3x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left[\left(2x-5\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(3x-1\right)\left(2x-5-x-2\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=7\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{3};7\right\}\)

c) Ta có: \(\left(x^2-25\right)+\left(x-5\right)\left(2x-11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\left(x-5\right)\left(2x-11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5+2x-11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x-6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\cdot3\cdot\left(x-2\right)=0\)

mà 3≠0

nên \(\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

Vậy: x∈{5;2}

d) Ta có: \(\left(x^2-6x+9\right)-4=0\)

\(\Leftrightarrow\left(x-3\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

Vậy: x∈{5;1}

e) Ta có: \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;1;\frac{3}{2}\right\}\)