Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt $x^2+x=a$ thì pt trở thành:
$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$
$\Leftrightarrow (a-2)(a+6)=0$
$\Leftrightarrow a-2=0$ hoặc $x+6=0$
$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$
Dễ thấy $x^2+x+6=0$ vô nghiệm.
$\Rightarrow x^2+x-2=0$
$\Leftrightarrow (x-1)(x+2)=0$
$\Leftrightarrow x=1$ hoặc $x=-2$
2.
$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$
$\Leftrightarrow (x^2+x)(x^2+x-2)=24$
$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)
$\Leftrightarrow a^2-2a-24=0$
$\Leftrightarrow (a+4)(a-6)=0$
$\Leftrightarrow a+4=0$ hoặc $a-6=0$
$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$
Nếu $x^2+x+4=0$
$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)
Nếu $x^2+x-6=0$
$\Leftrightarrow (x-2)(x+3)=0$
$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$
a) 3x2 – 7x + 2
\(=3x^2-6x-x+2\)
\(=\left(3x^2-6x\right)-\left(x-2\right)\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) a(x2 + 1) – x(a2 + 1)
\(=ax^2+a-\left(a^2x+x\right)\)
\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)
.......?
a) Ta có: \(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)
\(=x^2a+a-a^2x-x\)
\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)
\(=xa\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(xa-1\right)\)
c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
Nguyễn TrươngNguyễn Việt LâmNguyenTruong Viet TruongKhôi BùiAkai HarumaÁnh LêDƯƠNG PHAN KHÁNH DƯƠNGPhùng Tuệ Minhsaint suppapong udomkaewkanjana
e) Ta có: \(E=\left(3x+2\right)\left(3x-5\right)\left(x-1\right)\left(9x+10\right)+24x^2\)
\(=\left(9x^2-15x+6x-10\right)\left(9x^2+10x-9x-10\right)+24x^2\)
\(=\left(9x^2-10-9x\right)\left(9x^2-10+x\right)+24x^2\)
\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)-9x^2+24x^2\)
\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)+15x^2\)
\(=\left(9x^2-10\right)^2-3x\left(9x^2-10\right)-5x\left(9x^2-10\right)+15x^2\)
\(=\left(9x^2-10\right)\left(9x^2-3x-10\right)-5x\left(9x^2-10-3x\right)\)
\(=\left(9x^2-3x-10\right)\left(9x^2-5x-10\right)\)
a)\((x^2- 4).(x^2 - 10) = 72 Đặt x^2 - 7 = a(1), ta có (a+3)(a-3)=72 a^2-9=72 a^2=81 a=+-9 xét 2 trường hợp a = 9 và -9 khi thay vào (1) ta có..... tự lm nốt nha \)
b) nhóm x+1 vs x+4 và x+2 vs x+3 ta sẽ có (x2+5x+4)(x2+5x+6)(x+5)=40
Câu a:
\((x^2+x)^2+4(x^2+x)=12\)
\(\Leftrightarrow (x^2+x)^2+4(x^2+x)+4=16\)
\(\Leftrightarrow (x^2+x+2)^2=16\)
\(\Rightarrow \left[\begin{matrix} x^2+x+2=4\\ x^2+x+2=-4\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2+x-2=0\\ x^2+x+6=0\end{matrix}\right.\)
Với \(x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-2\end{matrix}\right.\)
Với \(x^2+x+6=0\Leftrightarrow (x^2+x+\frac{1}{4})+\frac{23}{4}=0\)
\(\Leftrightarrow (x+\frac{1}{2})^2=\frac{-23}{4}<0\) (vô lý- loại)
Vậy \(x\in \left\{-2;1\right\}\)
Câu b:
\(x(x-1)(x+1)(x+2)=24\)
\(\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24\)
\(\Leftrightarrow (x^2+x)(x^2+x-2)=24\)
\(\Leftrightarrow a(a-2)=24\) (đặt \(x^2+x=a\) )
\(\Leftrightarrow a^2-2a-24=0\)
\(\Leftrightarrow (a-6)(a+4)=0\Rightarrow \left[\begin{matrix} a-6=0\\ a+4=0\end{matrix}\right.\)
Nếu \(a-6=0\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow (x-2)(x+3)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
Nếu \(a+4=0\Leftrightarrow x^2+x+4=0\Leftrightarrow (x+\frac{1}{2})^2=\frac{-15}{4}<0\) (vô lý)
Vậy............
1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x=t\)
\(\Rightarrow BT=\left(t+10\right)\left(t+12\right)-24\)
\(=t^2+22x+96=\left(t+11\right)^2-25\ge-25\)
Vậy GTNN của bt là - 25\(\Leftrightarrow x^2+7x+11=0\)
\(\Delta=7^2-4.11=5\)
\(\orbr{\begin{cases}x_1=\frac{-22+\sqrt{5}}{2}\\x_2=\frac{-22-\sqrt{5}}{2}\end{cases}}\)
2) \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(x^2-8x=t\)
\(\RightarrowĐT=\left(t+7\right)\left(t+15\right)-20\)
\(=t^2+22t+85=\left(t+11\right)^2-36\ge-36\)
Vậy GTNN của bt là - 36\(\Leftrightarrow x^2-8x+11=0\)
\(\Delta=\left(-8\right)^2-4.11=20\)
\(\orbr{\begin{cases}x_1=\frac{-22-\sqrt{20}}{2}\\x_2=\frac{-22+\sqrt{20}}{2}\end{cases}}\)
b; x(x-1)(x+1)(x+2)-24
=(x2+x)(x2+x-2)-24
Đặt x2+x=k khi đó k(k-2)-24=k2-2k-24
=(k2-2k+1)-25=(k-1)2-52
=(k-1-5)(k-1+5)=(k-6)(k+4)
c; (x+2)(x-2)(x2-10)-72
=(x2-4)(x2-10)-72
Đặt x2-7=k khi đó (k-3)(k+3)-72=k2-9-72
=k2-81=(k-9)(k+9)=(x2-7-9)(x2-7+9)
=(x2-16)(x2+2)=(x-4)(x+4)(x2+2)
d; (x-7)(x-5)(x-4)(x-2)-72
=(x2-9x+14)(x2-9x+8)-72
Đặt x2-9x+11=k khi đó (k+3)(k-3)-72=k2-9-72
=k2-81=(k-9)(k+9)=(x2-9x+11-9)(x2-9x+11+9)
=(x2-9x+2)(x2-9x+20)
=(x2-9x+2)(x2-4x-5x+20)
=(x2-9x+2)(x-4)(x-5)