Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk:\(x\ge1\)
\(pt\Leftrightarrow3\left(x-2\right)\sqrt{x-1}\sqrt{x^2+x+1}+18\left(x-1\right)=x\left(x^2+x+1\right)\)
Chia 2 vế của pt cho \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)ta đc:
\(3\left(x-2\right)\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}+\frac{18\left(x-1\right)}{x^2+x+1}=x\)
Đặt \(y=\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}\left(y\ge0\right)\) pt trở thành
\(3\left(x-2\right)y+18y^2-x=0\)
\(\Leftrightarrow\left(3y-1\right)\left(6y+x\right)=0\)
\(\Leftrightarrow3y-1=0\left(y\ge0;x\ge1\Rightarrow6y+x\ge1\right)\)
\(\Leftrightarrow y=\frac{1}{3}\)\(\Leftrightarrow\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}=\frac{1}{3}\)
\(\Leftrightarrow9\left(x-1\right)=x^2+x+1\)
\(\Leftrightarrow x^2-8x+10=0\)
\(\Leftrightarrow x=4\pm\sqrt{6}\)
Vậy...
a.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)
\(\Rightarrow2x^2-10x=2t^2-8\)
Phương trình trở thành:
\(2t^2-8-3t+6=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x+4}=2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo). Viết thế này khó dịch quá.
a) căn(2x+5) - căn(3-x) = x2 -5x + 8
Điều kiện : \(-\frac{5}{2}\Leftarrow x\Leftarrow3\)
căn(2x+5) - căn(3-x) = x^2-5x+8
\(\Leftrightarrow\)[căn(2x+5)-3]-[căn(3-x)-1]=x2 -5x+6
nhân liên hợp
\(\Leftrightarrow\)(2x+5-9) / [căn(2x+5)+3] -(3-x-1) / [căn (3-x)+1]=(x-2)(x-3)
\(\Leftrightarrow\)(2x-4) / [căn (2x+5)+3] -(2-x) / [ căn (3-x)+1]-(x-2)(x-3)=0
\(\Leftrightarrow\)(x-2).M=0
\(\Leftrightarrow\)x=2 hoặc M=0
M=2 / [căn(2x+5)+3]+1 / [căn(3-x)+1]-x+3
2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x
voi -5/2<=x<=3 <->3-x thuoc[0;11/2]
nen M>0
vay x=2
b/ 2+ căn(3-8x) = 6x + căn(4x-1)
dk[1/4;8/3]
6x-2+căn(4x-1)-căn(3-8x)=0
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(...
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x...
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x...
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0
2+4/[căn(4x-1)+căn(3-8x)>0
nen 3x-1=0
x=1/3
a) căn(2x+5) - căn(3-x) = x^2-5x+8
dkxd -5/2<=x<=3
căn(2x+5) - căn(3-x) = x^2-5x+8
<->[can(2x+5)-3]-[can(3-x)-1]=x^2-5x+6
nhan lien hop
<->(2x+5-9)/[can(2x+5)+3] -(3-x-1)/[can(3-x)+1]=(x-2)(x-3)
<->(2x-4)/[can(2x+5)+3] -(2-x)/[can(3-x)+1]-(x-2)(x-3)=0
<->(x-2).M=0
<->x=2 hoac M=0
M=2/[can(2x+5)+3]+1/[can(3-x)+1]-x+3
2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x
voi -5/2<=x<=3 <->3-x thuoc[0;11/2]
nen M>0
vay x=2
b/ 2+ căn(3-8x) = 6x + căn(4x-1)
dk[1/4;8/3]
6x-2+căn(4x-1)-căn(3-8x)=0
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(...
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x...
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x...
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0
2+4/[căn(4x-1)+căn(3-8x)>0
nen 3x-1=0
x=1/3
1/
Ta có: \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)
\(\sqrt{24}^2\)= 24 = 16 + 8
Vì: \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)
Nên: \(\sqrt{15}< 4\)
=> \(2\sqrt{15}< 8\)
=> \(16+2\sqrt{15}< 24\)
=> \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
2/
b/ \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)
<=> \(3x-7\sqrt{x}-20=0\)
<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)
<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)
<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)
<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)
<=> \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)
<=> \(x=16\)
Vậy S=\(\left\{16\right\}\)
c/ \(1+\sqrt{3x}>3\)
<=> \(\sqrt{3x}>2\)
<=> \(3x>4\)
<=> \(x>\frac{4}{3}\)
d/ \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))
<=> \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)
<=> \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\)
<=> \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)
<=> \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
<=> \(x+1=0\) hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)
<=> \(x=-1\)(loại) hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)
Vậy S={ 9 }