K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Góc BAE = 1/2 góc BAC ( 1 )

Góc BAC là góc ngoài hình tam giác ABD

=> Góc ADB + Góc ABD = Góc BAC . Mà hình tam giác ABD cân tại A ( vì AB = AD )

=> ADB = ABD

=> Góc ABD + Góc ADB = 1/2 Góc BAC ( 2 )

Từ ( 1 ) và ( 2 ) => Góc BAE = Góc ABD => AE // BD

27 tháng 12 2017

Lộn bài , sorry !

27 tháng 12 2017

Bạn ơi đề có sai ko vậy?

27 tháng 12 2017

Mk viết sai đề ! Cảm ơn bn nha ! Hằn gì thấy sai sai ko biết làm sao ! Hì , thank you !

25 tháng 9 2016

góc BAE bằng 1/2 góc BAC(1)

Góc Bac là góc ngoài tam giác ABD => Góc ADB +ABD = BAC Mà tam giác ABD cân tại A ( vì AB=AD )=> ADB =ABD 

        => ABD +ADB =1/2 BAC(2)

Từ (1) và (2) => Góc BAE = ABD => AE//BD

16 tháng 11 2017

Nguyễn Dịu Thảo có thể nào giải bằng cách Trường hợp bằng nhau của tam giác cạnh - cạnh - cạnh được ko ?

28 tháng 10 2017

Đỗ Đức Đạt  giúp vs

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD

AD chung

=>ΔABD=ΔAED

=>DB=DE

b: Xét ΔDBF và ΔDEC có

DB=DE

góc DBF=góc DEC

BF=EC

=>ΔDBF=ΔDEC

=>góc BDF=góc EDC

=>góc BDF+góc BDE=180 độ

=>F,D,E thẳng hàng

c: Xét ΔAFC có AB/BF=AE/EC

nên BE//CF

d: Xét ΔABC và ΔAEF có

AB=AE

góc BAC chung

AC=AF

=>ΔABC=ΔAEF

Bài 1: 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

Ta có: AE+EB=AB

AD+DC=AC

mà AB=AC
và AD=AE

nên EB=DC

Xét ΔEBO vuông tại E và ΔDCO vuông tại D có

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó: ΔEBO=ΔDCO

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó:ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

22 tháng 6 2017

a/ Ta có AD là phân giác góc BAC (gt) => góc DAC = gócBAC/2 (1) 
Tương tự góc CAF = gócCAE/2 (2) 
Mà góc BAC + góc CAE = 180 độ (kề bù) (3) 
Từ (1);(2) và (3) => góc DAC + góc CAF =180/2 = 90độ => AF vuông góc với AD. Mà BC cũng vuông góc với AD (Cm phần a) => AF // BC (quan hệ từ vuông góc đến song song). 

b/ Do AF // BC (CM trên) => góc DCA = góc CAF (so le trong) => góc CAF = góc ABC => góc ABC = góc EAF 
Xét tam giác BDA và tam giác AFE có AB = AE (gt); góc ABC = góc EAF và BD = AF (gt) 
=> 2 tam giác này bằng nhau(c.g.c) => góc BDA = góc EFA = 90độ và EF = AD 

c/ Chứng minh tương tự phần c ta được tam giác FAC = tam giác DCA(c.g.c) => góc AFC = góc ADC = 90độ. 
Ta thấy nếu E;F;C thẳng hàng thì suy ra: + Góc EFC = 180độ (góc bẹt) 
+ góc AEF = góc AEC 
Ngoài ra còn tạo ra góc đối đỉnh,... 
Nên ngược lại ta có thể dùng các điều suy ra để chứng minh các điểm thẳng hàng 
Ta có : góc EFA + góc AFC = 90độ + 90độ = 180 độ => 3 điểm E;F và C thẳng hàng (đpcm)

CHÚC BẠN HỌC GIỎI