Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x-1\right)^2=49\)
\(\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=8\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
\(b,\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(4x^2+28x+49=9x^2+36x+36\)
\(4x^2+28x+49-9x^2-36x-36=0\)
\(-5x^2-8x+13=0\)
\(5x^2+13-5x-13=0\)
\(x\left(5x+13\right)-1\left(5x+13\right)=0\)
\(\left(x-1\right)\left(5x+13\right)=0\)
\(\left[{}\begin{matrix}x=1\\5x=-13\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=-\frac{13}{5}\end{matrix}\right.\)
\(c,4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)
\(\left(4x+14\right)^2-\left(3x+9\right)^2=0\)
\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(x=-5\)
\(d,\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
\(25x^2-30x+9-16x^2+56x-49=0\)
\(9x^2+26x-40=0\)
\(9x^2+36x-10x-40=0\)
\(9x\left(x+4\right)-10\left(x+4\right)=0\)
\(\left(9x-10\right)\left(x+4\right)=0\)
\(\left[{}\begin{matrix}9x-10=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\frac{10}{9}\\x=-4\end{matrix}\right.\)
Bài 8:
b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3
= (1+2x2y)(1-2x2y+4x4y2)
e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))
Bài 9:
c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3
= (1-3x)3
d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)
= (x+\(\dfrac{1}{2}\))3
f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)
= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)
\(A=49x^2-28x+25\)
\(A=\left(7x\right)^2-2.7x.2+4-4+25\)
\(A=\left(7x-2\right)^2+21\)
Vì \(\left(7x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(7x-2\right)^2+21\ge21\) với mọi x
\(\Rightarrow Amin=21\Leftrightarrow7x-2=0\)
\(\Rightarrow7x=2\)
\(\Rightarrow x=\dfrac{2}{7}\)
Vậy \(Amin=21\Leftrightarrow x=\dfrac{2}{7}\)
\(B=8x^2-28x-1\)
\(B=2\left(4x^2-14x-\dfrac{1}{2}\right)\)
\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\left(\dfrac{7}{2}\right)^2-\dfrac{1}{2}\right]\)
\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\dfrac{51}{4}\right]\)
\(B=2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\)
Vì \(2\left(2x-\dfrac{7}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)
\(\Rightarrow Bmin=-\dfrac{51}{2}\Leftrightarrow2x-\dfrac{7}{2}=0\)
\(\Rightarrow2x=\dfrac{7}{2}\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy \(Bmin=-\dfrac{51}{2}\Leftrightarrow x=\dfrac{7}{4}\)
\(C=\left(2x^2+5\right)^2+10\)
Vì \(\left(2x^2+5\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x^2+5\right)^2+10\ge10\) với mọi x
\(\Rightarrow Cmin=10\Leftrightarrow2x^2+5=0\)
\(\Rightarrow2x^2=-5\)
\(\Rightarrow x^2=-\dfrac{5}{2}\)
\(\Rightarrow\) Không tồn tại x thỏa mãn
Vậy C không có giá trị nhỏ nhất
P/s: Câu c mình làm không có chắc nha, thấy nó sao sao ấy, không biết có sai đề không?
\(D=3x^2-8x+7\)
\(D=3\left(x^2-\dfrac{8}{3}x+\dfrac{7}{3}\right)\)
\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{16}{9}+\dfrac{7}{3}\right)\)
\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}+\dfrac{5}{9}\right)\)
\(D=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\)
Vì \(3\left(x-\dfrac{4}{3}\right)^2\ge0\) với mọi x
\(\Rightarrow3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)
\(\Rightarrow Dmin=\dfrac{5}{3}\Leftrightarrow x-\dfrac{4}{3}=0\)
\(\Rightarrow x=\dfrac{4}{3}\)
Vậy \(Dmin=\dfrac{5}{3}\Leftrightarrow x=\dfrac{4}{3}\)
\(E=x^4-2x^2+12\)
\(E=\left(x^2\right)^2-2x^2+1+11\)
\(E=\left(x^2-1\right)^2+11\)
Vì \(\left(x^2-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x^2-1\right)^2+11\ge11\) với mọi x
\(\Rightarrow Emin=11\Leftrightarrow x^2-1=0\)
\(\Rightarrow x^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(Emin=11\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(F=4x^2+15x+2\)
\(F=\left(2x\right)^2+2.2x.\dfrac{15}{4}+\left(\dfrac{15}{4}\right)^2-\left(\dfrac{15}{4}\right)^2+2\)
\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{225}{16}+\dfrac{32}{16}\)
\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\)
Vì \(\left(2x+\dfrac{15}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)
\(\Rightarrow Fmin=-\dfrac{193}{16}\Leftrightarrow2x+\dfrac{15}{4}=0\)
\(\Rightarrow2x=-\dfrac{15}{4}\)
\(\Rightarrow x=-\dfrac{15}{4}.\dfrac{1}{2}\)
\(\Rightarrow x=-\dfrac{15}{8}\)
Vậy \(Fmin=-\dfrac{193}{16}\Leftrightarrow x=-\dfrac{15}{8}\)
\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(H=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)
\(H=\left(x^2+4x\right)^2-5^2\)
\(H=\left(x^2+4x\right)^2-25\)
Vì \(\left(x^2+4x\right)^2\ge0\)
\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\) với mọi x
\(\Rightarrow Hmin=-25\Leftrightarrow x^2+4x=0\)
\(\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(Hmin=-25\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
\(I=\left(x^6+6\right)^2\)
Vì \(\left(x^6+6\right)^2\ge0\)
\(\Rightarrow Imin=0\Leftrightarrow x^6+6=0\)
\(\Rightarrow\left(x^3\right)^2=-6\)
\(\Rightarrow\) Không tồn tại x
Vậy I không có giá trị nhỏ nhất
\(A=49x^2-28x+25=\left(49x^2-28x+1\right)+24=\left(7x-1\right)^2+24\ge24\)
Vậy GTNN của A là 24 khi x = \(\dfrac{1}{7}\)
\(B=8x^2-28x-1=8\left(x^2-\dfrac{7}{2}x+\dfrac{49}{16}\right)-\dfrac{51}{2}=8\left(x-\dfrac{7}{4}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)
Vậy GTNN của B là \(-\dfrac{51}{2}\) khi x = \(\dfrac{7}{4}\)
\(C=\left(2x^2+5\right)^2+10=4x^4+20x^2+35\ge35\)
Vậy GTNN của C là 35 khi x = 0
\(D=3x^2-8x+7=3\left(x^2-\dfrac{8}{3}x+\dfrac{16}{9}\right)+\dfrac{5}{3}=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)
Vậy GTNN của D là \(\dfrac{5}{3}\) khi x = \(\dfrac{4}{3}\)
\(E=x^4-2x^2+12=\left(x^4-2x^2+1\right)+11=\left(x^2-1\right)^2+11\ge11\)
Vậy GTNN của E là 11 khi x = 1 hoặc x = -1
\(F=4x^2+15x+2=\left(4x^2+15x+\dfrac{225}{16}\right)-\dfrac{193}{16}=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)
Vậy GTNN của F là \(-\dfrac{193}{16}\) khi x = \(-\dfrac{15}{8}\)
\(G=8\left(a+2\right)^3-\left(2a+1\right)^3\)
\(G=36a^2+90a+63\)
\(G=9\left(4a^2+10a+7\right)\)
\(G=9\left(4a^2+10a+\dfrac{25}{4}\right)+\dfrac{27}{4}\)
\(G=9\left(2a+\dfrac{5}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\)
Vậy GTNN của G là \(\dfrac{27}{4}\) khi x = \(-\dfrac{5}{4}\)
\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(H=x^4+8x^3+16x^2-25\)
\(H=\left(x^2+4x\right)^2-25\ge-25\)
Vậy GTNN của H là -25 khi x = -4 hoặc x = 0
\(I=\left(x^6+6\right)^2=x^{12}+12x^6+36\ge36\)
Vậy GTNN của I là 36 khi x = 0
1/ \(A=3\left(x+1\right)^2-\left(x+3\right)^2\)
\(=3\left(x^2+2x+1\right)-\left(x^2+6x+9\right)\)
\(=3x^2+6x+3-x^2-6x-9\)
\(=2x^2-6\)
Vậy biểu thức A vẫn phụ thuộc vào biến -_-
2/ \(B=\left(x-2\right)^2-\left(x-4\right)x\)
\(=x^2-4x+4-x^2-4x\)
\(=4\)
Vậy biểu thức B không phụ thuộc vào biến (đpcm)
3/ \(C=3\left(x+2\right)^2-3\left(x^2-4x\right)\)
\(=3\left(x^2+4x+4\right)-3x^2+12x\)
\(=3x^2+12x+12-3x^2+12x\)
\(=24x+12\)
Vậy biểu thức C vẫn phụ thuộc vào biến -_-
4/ \(D=3x\left(x-2\right)\left(x+2\right)-x\left(3x+3\right)\)
\(=3x\left(x^2-4\right)-3x^2-3x\)
\(=3x^3-12x-3x^2-3x\)
\(=3x^3-3x^2-15x\)
Vậy biểu thức D vẫn phụ thuộc vào biến -_-
5/ \(E=x^2-\left(x+1\right)\left(x-1\right)+5\)
\(=x^2-\left(x^2-1\right)+5\)
\(=x^2-x^2+1+5\)
\(=6\)
Vậy biểu thức E không phụ thuộc vào biến.
a) \(49.51=\left(50-1\right)\left(50+1\right)=50^2-1^2=2500-1=2499\)
b) \(29.31=\left(30-1\right)\left(30+1\right)=30^2-1^2=900-1=899\)
c) \(101^2=\left(100+1\right)^2=100^2+2.100.1+1^2=10000+200+1=10201\)
d) \(99^2+2.99+1=\left(99+1\right)^2=100^2=10000\)
e) \(\left(10^2+8^2+6^2+4^2+2^2\right)-\left(9^2+7^2+5^2+3^2+1^2\right)\)
\(=10^2-9^2+8^2-7^2+6^2-5^2+4^2-3^2+2^2-1^2\)
\(=\left(10-9\right)\left(10+9\right)+\left(8-7\right)\left(8+7\right)+\left(6-5\right)\left(6+5\right)+\)
\(\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(=10+9+8+7+6+5+4+3+2+1=55\)
f) \(1998^2-1997.\left(1998+1\right)=1998^2-\left(1998-1\right)\left(1998+1\right)\)
\(=1998^2-1998^2+1=1\)