Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{2}{3+2\sqrt{2}}-\frac{7}{1-2\sqrt{2}}+\frac{4}{\sqrt{5}-1}+\sqrt{8}-2\)
\(=\frac{2.\left(3-2\sqrt{2}\right)}{9-8}-\frac{7.\left(1+2\sqrt{2}\right)}{1-8}+\frac{4.\left(\sqrt{5}+1\right)}{5-1}+2\sqrt{2}-2\)
\(=6-4\sqrt{2}-\frac{7.\left(1+2\sqrt{2}\right)}{-7}+\frac{4.\left(\sqrt{5}+1\right)}{4}+2\sqrt{2}-2\)
\(=6-4\sqrt{2}+1+2\sqrt{2}+\sqrt{5}+1+2\sqrt{2}-2\)
\(=6+\sqrt{5}\)
\(b,\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{5}}\)
\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{5}}{4-5}\)
\(=\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{3}-\sqrt{2}}{1}+\frac{\sqrt{4}-\sqrt{5}}{-1}\)
\(=-1+\sqrt{2}+\sqrt{3}-\sqrt{2}-2+\sqrt{5}\)
\(=-3+\sqrt{3}+\sqrt{5}\)
\(c,\sqrt{4-2\sqrt{3}}+2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{3}\)
\(=\sqrt{3}-1+2\sqrt{3}\)
\(=-1+3\sqrt{3}\)
\(d,A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}+\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{2}}+\frac{\sqrt{3}+1}{\sqrt{2}}\)
\(=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}\)
\(=\frac{2\sqrt{3}}{\sqrt{2}}\)
\(=\sqrt{6}\)
\(e,B=\sqrt{\frac{2}{2+\sqrt{3}}}\)
Ta có \(\frac{2}{2+\sqrt{3}}=\frac{2.\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}\)
Thay lại ta được \(\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
.... Đúng thì ủng hộ nha ....
Kết bạn với mình ... ;) ;)
a)\(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{12-2.2\sqrt{3}.1+1}+\sqrt{4-2.2.\sqrt{3}+3}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2\sqrt{3}-1\right|+\left|2-\sqrt{3}\right|\)
\(=2\sqrt{3}-1+2-\sqrt{3}=\sqrt{3}+1\)
b)\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{5-2\sqrt{5}.1+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)=2\sqrt{5}\)
c)\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)
d)\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{4+2.2\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)=4\)
e)\(\sqrt{9+4\sqrt{5}}=\sqrt{5+2.\sqrt{5}.2+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)
f)\(\sqrt{23+8\sqrt{7}}=\sqrt{16+2.4.\sqrt{7}+7}=\sqrt{\left(4+\sqrt{7}\right)^2}=4+\sqrt{7}\)
a.\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right).\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)
\(=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right).\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)
\(=\left(\sqrt{3}+1-\sqrt{3}+1\right)\left(\sqrt{3}-1+\sqrt{3}+1\right)\)
\(=2.2\sqrt{3}=4\sqrt{3}\)
b.\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=\left[\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\right]^2\)
\(=\left(\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\right)^2\)
\(=\left(\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}\right)^2=\left(\sqrt{2}\right)^2=2\)
c.\(\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}=\sqrt{5-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
e) \(E=A-\sqrt{2}\)
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(A^2=8-2\sqrt{16-7}=8-6=2\)
\(A>0=>A=\sqrt{2}\)
\(E=A-\sqrt{2}=0\)
a)\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
=\(\left(6\sqrt{10}+6\sqrt{2}-10\sqrt{2}-2\sqrt{10}\right)\sqrt{3+\sqrt{5}}\)
=\(\left(4\sqrt{10}-4\sqrt{2}\right)\sqrt{3+\sqrt{5}}=\left(4\sqrt{10}-4\sqrt{2}\right)\dfrac{\sqrt{5}+1}{2}\)
=\(\dfrac{20\sqrt{2}+4\sqrt{10}-4\sqrt{10}-4\sqrt{2}}{2}\)
=\(\dfrac{16\sqrt{2}}{2}=8\sqrt{2}\)
b)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
=\(\dfrac{\sqrt{5}+1-\sqrt{5}+1-2}{\sqrt{2}}=0\)
c)\(\sqrt{3,5-\sqrt{6}}+\sqrt{3,5+\sqrt{6}}\)
=\(\dfrac{\sqrt{6}-1+\sqrt{6}+1}{\sqrt{2}}=2\sqrt{3}\)
d)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
=\(\dfrac{\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}}{\sqrt{2}}=\sqrt{7}-1\)
e)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
=\(\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}=0\)
1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)
3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)
\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)
\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)
\(a,\left(\sqrt{32}-\sqrt{50}+\sqrt{8}\right):2\)
\(=\left(4\sqrt{2}-5\sqrt{2}+2\sqrt{2}\right):2\)
\(=\sqrt{2}:2\)
a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))
=\(\sqrt{2006}^2-\sqrt{2005}^2\)
=2006-2005
=1
* \(\sqrt{2}\)A = \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+\sqrt{14}=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{14}=\sqrt{7}-1-\left(\sqrt{7}+1\right)+\sqrt{14}=\sqrt{14}-2\)
=> A = \(\sqrt{7}-\sqrt{2}\)
* B là 6,5 hay 6*5 vậy bạn
nếu 6,5 thì : B cũng nhân \(\sqrt{2}\) biểu thức trở thành
\(\sqrt{2}B=\sqrt{13+2\sqrt{12}}+\sqrt{13-2\sqrt{12}}+4\sqrt{3}=\sqrt{\left(1+\sqrt{12}\right)^2}+\sqrt{\left(\sqrt{12}-1\right)^2}+4\sqrt{3}=1+\sqrt{12}+\sqrt{12}-1+4\sqrt{3}=4\sqrt{3}+4\sqrt{3}=8\sqrt{3}\)
=> B = \(\dfrac{8\sqrt{3}}{\sqrt{2}}=4\sqrt{6}\)
nếu 6*5 thì : bạn tách hai căn đầu thành một biểu thức rồi bình phương lên rồi giải , sau đó trục căn , biểu thức luôn dương nhé , mấy bài này nếu không thể tách thì làm cách này cũng được
* C thì mik chỉ bít pt được nhiu đây thôi , bạn thông cảm nhé\(\sqrt{29-6\sqrt{20}}=\sqrt{\left(\sqrt{20}-3\right)^2}=\sqrt{20}+3=2\sqrt{5}-3\)
* D = \(\sqrt{13-2\cdot2\sqrt{2}\cdot\sqrt{5}}-\sqrt{53+2\cdot2\sqrt{2}\cdot3\sqrt{5}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}+3\sqrt{5}\right)^2}=2\sqrt{2}-\sqrt{5}-2\sqrt{2}-3\sqrt{5}=-4\sqrt{5}\)
Câu C có sai đề ko? Tui sửa đây!
Ta có: \(C=\sqrt{46+6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
=> \(C=\sqrt{45+2.3\sqrt{5}+1}-\sqrt{20-2.3.2\sqrt{5}+9}\)
=> \(C=\sqrt{\left(3\sqrt{5}+1\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
=> \(C=\left|3\sqrt{5}+1\right|-\left|2\sqrt{5}-3\right|\)
=> \(C=3\sqrt{5}+1-2\sqrt{5}+3=4+\sqrt{5}\)
=3.741657387
cách tính làm sao ý