Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số phải tìm là abcd = n²
=> số viết theo thứ tự ngược lại là dcba = m² với m,n là các số tự nhiên và m>n
Do abcd và dcba đều ≤ 9999 và ≥ 1000 nên:
1000 ≤ m², n² ≤ 9999 => 32 ≤ m,n ≤ 99 (vì m,n € N)
abcd và dcba đều chính phương nên: a,d € {1,4,6,9} (các số cp tận cùng chỉ có thể là 1,4,6 hoặc 9) và a<d (♣)
Do dcba chia hết cho abcd nên: m² chia hết cho n² hay m chia hết cho n.
Đặt m = k.n với k € N và k ≥ 2: dcba = k². abcd
Ta có:
m = k.n ≤ 99
32 ≤ n
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3
Như vậy: k = 2 hoặc 3
+Nếu k = 2 thì: dcba = 4.abcd (♥)
Theo (♣) a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với (♣) đc: d= 4 hoặc d =6
Với d=4: (♥) <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: (♥) <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd (♦)
a chỉ có thể là 1 và d = 9. Khi đó: (♦) <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
Mình tìm hiểu thì biết số chính phương là số bình phương của 1 số nguyên.
2 số cần tìm :
9801 = 99^2
và 1089 = 33^2
Gọi số đó là ab, ta có hpt: a2 + b2 = ab + a.b và ab + 36 = ba
=> a = 7; b = 8 => ab = 78
gọi số đó là ab
theo đề bài có hệ phương trình
a^2 + b^2 = ab + a x b
ab + 36 = ba
giải hệ được ab là 48
Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.
Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.
b,n>4
Ta có : an=144..4=10000b+4444(bεZ)
Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12
Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.
Vậy an không phải là số chính phương.
Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương
b1, theo mình thì tìm số lần xuất hiện của các số từ 1 đến 9,sau đó cộng các chữ số lại rồi chia 3 dư 2
=>ko phải là scp
b2,
28+211+2n=2304+2n là số chính phương
mà 2304 chia hết cho 3=>2n chia 3 dư 1
<=>2n=22k=4k
<=>2304+4k là số chính phương
đặt 2304+4k=a2
<=>(a-2k)(a+2k)=2304
đến đây thì dễ rồi
Bài 2:
Mình áp dụng cách trong thi casio nhé;
\(2^8+2^{11}+2^n=2034+2^n.\)
Đặt \(2034+2^n=y^2\Leftrightarrow2^n=\left(y-48\right)\left(y+48\right)\)
Đặt \(2^n=2^{p.q}\left(p>q\right)\)
\(\Leftrightarrow2^p=y+48;2^q=y-48\)
\(\Leftrightarrow2^p-2^q=96\Leftrightarrow2^q.\left(2^{p-q}-1\right)=2^5.3\)
\(\Rightarrow q=5,p=7\Rightarrow q+p=n=12\)
Vậy n=12
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n-m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=>n=11;m=13
TH2:2n-m=3 và 2n+m=105 <=>n=27; m=51
TH3:2n-m=5 và 2n+m=67 <=>n=17 và m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13 và m=19
TH5:2n-m=15 và 2n+m=21 <=>n=9 và m=3
Ta có a+71=n2
=> a lớn nhất khi n lớn nhất
=>n=27
=>a=272-71=658
Vậy max a=658
Đây là KQ của mk k biết coó đúng k
Gọi số cần tìm là \(\overline{ab}\)
Theo đề bài, ta có:
\(\overline{ab}+63=\overline{ba}\)và \(a+b=9\)
Từ đó, ta có HPT:
\(\hept{\begin{cases}a+b=9\\10a+b+63=10b+a\end{cases}\Rightarrow\hept{\begin{cases}a+b=9\\9a+63=9b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=9\\a+7=b\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=8\end{cases}}}\)
Vậy số cần tìm là 18
Cho một số có hai chữ số, biết rằng tổng các chữ số của nó bằng 7 và khi đảo thứ tự hai chữ số của nó thì được số mới hơn số ban đầu 27 đơn vị. Khi đó chữ số hàng chục là bao nhiêu
Xét tổng:
+) Hỏi rằng các số: \(1^2;2^2;3^2;...;1982^2\) viết liền nhau và xếp theo một thứ tự nào đó thì có phải là số chính phương
Xét \(1^2+2^2+3^2+4^2+...+1982^2\)
\(=\frac{1982.\left(1982+1\right)\left(2.1982+1\right)}{6}\)
\(=991.661.3695\)
Ta có: \(9+9+1=19;1+9=10;1+0=1\)
\(661=6+6+1=13;1+3=4\)
\(3695=3+6+9+5=23;2+3=5\)
Và \(1.4.5=20;2+0=2\)
=> Số gốc của tổng \(1^2+2^2+3^2+4^2+...+1982^2\) bằng 2 khác 1; 4; 9; 7
=> \(1^2;2^2;3^2;...;1982^2\) có viết thành bất kì một thứ tự nào nữa cũng ko là số chính phương