Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
\(=\frac{3\left(2-\sqrt{3}\right)}{2^2-3}+\frac{13\left(4+\sqrt{3}\right)}{4^2-3}+\frac{6\sqrt{3}}{3}\)
\(=3\left(2-\sqrt{3}\right)+\left(4+\sqrt{3}\right)+2\sqrt{3}\)
\(=3.2+4=6+4=10\)
b) \(=\left[\frac{\left(\sqrt{14}-\sqrt{7}\right)\left(\sqrt{2}+1\right)}{2-1}+\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{3-1}\right]:\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\) (nhân bung mấy cái trong ngoặc vuông ra, rút gọn)
c) Gợi ý: \(28-10\sqrt{3}=5^2-2.5.\sqrt{3}+\sqrt{3}=\left(5-\sqrt{3}\right)^2\)
d) \(=\frac{3\left(3-2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}+\frac{3\left(3+2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}=-6\)
e) Tự làm.
a) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\left(\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}\right)\cdot3}}{3}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}\)
\(=\dfrac{\sqrt{3}+\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}+\dfrac{\sqrt{2}}{6}\)
b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=...\)
c) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=...\)
d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+1+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{4}\)
\(=\dfrac{\sqrt{3\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{2}\)
\(=\dfrac{\sqrt{3-\sqrt{3}-1}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{3}-1\right)\cdot\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+2\sqrt{12}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+4\sqrt{3}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(8+4\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(4-3\right)\cdot4}}{2}\)
\(=\dfrac{\sqrt{1\cdot4}}{2}\)
\(=\dfrac{2}{2}\)
\(=1\)
1)
dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)
ta co b=2-a
a^3+b^3=x+1+7-x=8
a^3+b^3=a^3+b^3+3ab(a+b)
ab(a+b)=0
suy ra a=0 hoac b=0 hoac a=-b
<=> x=-1; x=7
a=-b
a^3=-b^3
x+1=x+7 (vo li nen vo nghiem)
cau B tuong tu
2)
tat ca cac bai tap deu chung 1 dang do la
\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so
dang nay co 2 cach
C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)
B^3=10-9B
B=1 cach nay nhanh nhung kho nhin
C2 dat an
\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)
de thay B=a+b
a^3+b^3=10
ab=-3
B^3=10-9B
suy ra B=1
tuong tu giai cac cau con lai.
Bài 1:
a. Đặt \(a=\sqrt[3]{x+1}\); \(b=\sqrt[3]{7-x}\). Ta có:
\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)
\(\Leftrightarrow x=-1\)hoặc \(x=7\)
\(A=\sqrt{2+2\sqrt{\frac{3}{4}}}+\sqrt{2-2\sqrt{\frac{3}{4}}}\)
\(A=\sqrt{\left(\sqrt{\frac{3}{2}}\right)^2+2\sqrt{\frac{3}{2}.\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}\right)^2-2\sqrt{\frac{3}{2}.\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}\)
\(A=\sqrt{\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)^2}\)
\(A=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\)
\(A=2\sqrt{\frac{3}{2}}=\sqrt{4.\frac{3}{2}}=\sqrt{6}\)
\(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=|2+\sqrt{3}|+|2-\sqrt{3}|\)\(=2+\sqrt{3}+2-\sqrt{3}=4\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)
\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)
\(=8+2\sqrt{5}-2=6+2\sqrt{5}\)
\(=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)
\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)
\(=10,94430659\)
\(\text{Lm hơi vắn tắt thông cảm nha!!}\)
Ta có: \(\frac{1}{2\sqrt{3}-5}-\frac{1}{2\sqrt{3}+5}\)
\(=\frac{2\sqrt{3}+5-2\sqrt{3}+5}{\left(2\sqrt{3}-5\right)\left(2\sqrt{3}+5\right)}\)
\(=\frac{10}{\left(2\sqrt{3}\right)^2-5^2}\)
\(=\frac{10}{12-25}=\frac{-10}{13}\)
\(\Rightarrow\)Chọn A