Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |x+4| > 0
=> 2015 + |x+4| > 2015
=> B > 2015
Dấu "=" xảy ra <=> |x+4| = 0
<=> x+4 = 0
<=> x = -4
KL: Bmin = 2015 <=> x = -4
A nhỏ nhất khi
999-x nhỏ nhất
=>999-x=1 (vì nếu 999-x =0 thì A không xác định)
x=999-1
x=998
thay x vào A ta được:
A=2015-1015:(999-998)
=2015-1015:1
=1000
vậy GTNN của A là 1000 tại x=998
Ta thấy: |x-10| >= 0 (1); |x-10| >= 0 (2)
Cộng 2 bđt cùng chiều (1) và (2) ta được: |x-10| + |x-10| >= 0 <=> A= |x-10| + |x-10| -2 >= -2
=> minA = -2
Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100
Chắc v!! =)))
a) *Xét x=0
==> Giá trị A=2022!(1)
*Xét 0<x≤2022
==> A=0(2)
*Xét x>2022
==> A≥2022!(3)
Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022
Mà để xmax ==> x=2022
Vậy ...
b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)
Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất
Mà x-2021≠0 =>x-2021=1==>x=2022
Khi đó Bmax=6057
Vậy...
Đặt \(A=\frac{9n-4}{2n-7}=\frac{9n-\frac{63}{2}+\frac{33}{2}}{2n-7}=\frac{\frac{9}{2}\left(2n-7\right)+\frac{33}{2}}{2n-7}=\frac{9}{2}+\frac{\frac{55}{2}}{2n-7}\)
Để A có GTLN
\(\Leftrightarrow\frac{\frac{55}{2}}{2n-7}\)có GTLN
\(\Leftrightarrow2n-7\)có GTNN, 2n-7 lớn hơn 0 và n thuộc Z
\(\Leftrightarrow2n-7=1\)
\(\Leftrightarrow2n=8\)
\(\Leftrightarrow n=4\)
Vậy, A có GTLN là 32 khi x=4
số phần tử của tập hợp H là
99 - 0 : 1 + 1 = 100 phần tử
đúng ko bạn
Mấy bạn lộn đề rồi -_-