K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

25 tháng 7 2018

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)

3 tháng 7 2017

Bài 2:
Ta thấy:
\(-2x\left(x+5\right)+\left(2x^2+4\right)+10x\)
\(=-2x^2+-10x+2x^2+4+10x\)
\(=\left(-2x^2+2x^2\right)+\left(-10x+10x\right)+4\)
\(=0+0+4\)
\(=4\)
Vậy biểu thức -2x ( x + 5 ) + ( 2x2 + 4 ) + 10x có giá trị bằng 4

3 tháng 7 2017

Ta có : (3x + 1)2 \(\ge0\forall x\)

=> 2(3x + 1)2 \(\ge0\forall x\)

=> 3 - 2(3x + 1)2 \(\le3\forall x\)

Vậy GTLN của A là 3 khi x = \(-\frac{1}{3}\)

7 tháng 10 2021

1) \(P=-2x^2-12x=-2\left(x^2+6x+9\right)+18=-2\left(x+3\right)^2+18\le18\)

\(maxP=18\Leftrightarrow x=-3\)

2) \(Q=-5x^2+10x=-5\left(x^2-2x+1\right)+5=-5\left(x-1\right)^2+5\le5\)

\(maxQ=5\Leftrightarrow x=1\)

3) \(A=-3x^2+12x-6=-3\left(x^2-4x+4\right)+6=-3\left(x-2\right)^2+6\le6\)

\(maxA=6\Leftrightarrow x=2\)

4) \(B=-2x^2-24x+12=-2\left(x^2+12x+36\right)+84=-2\left(x+6\right)^2+84\le84\)

\(maxB=84\Leftrightarrow x=-6\)

24 tháng 12 2018

Đêm Noel..Đêm Noel~~~...Ma gõ cửa nhà em:))...Em đi ra~~~~Phi xe ga......Đâm chết năm con gà=)))))))...hố hố...... ~Merry Christmas~ ^-^ Noel đến đít rùi:))

26 tháng 7 2020

a, Ta có : \(-x^2+2x-1-3\)

\(=-\left(x-1\right)^2-3\)

Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)

=> \(-\left(x-1\right)^2-3\le-3\forall x\)

Vậy Max = -3 <=> x = 1 .

b, Ta có : \(-x^2-4x-4+4\)

\(=-\left(x+2\right)^2+4\)

Ta thấy : \(\left(x+2\right)^2\ge0\forall x\)

=> \(-\left(x+2\right)^2+4\le4\forall x\)

Vậy Max = 4 <=> x = -2 .

c, Ta có : \(-9x^2+24x-16-2\)

\(=-9\left(x^2-\frac{2.4x}{3}+\frac{16}{9}\right)-2\)

\(=-9\left(x-\frac{4}{3}\right)^2-2\)

Ta thấy : \(\left(x-\frac{4}{3}\right)^2\ge0\forall x\)

=> \(-9\left(x-\frac{4}{3}\right)^2-2\le-2\forall x\)

Vậy Max = -2 <=> x = \(\frac{4}{3}\) .

d, Ta có : \(-x^2+4x-4+3\)

\(=-\left(x-2\right)^2+3\)

Ta thấy : \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2+3\le3\forall x\)

Vậy Max = 3 <=> x = 2 .

e, Ta có : \(-x^2+2x-1-4y^2-4y-1+7\)

\(=-\left(x-1\right)^2-4\left(y^2+y+\frac{1}{4}\right)+7\)

\(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\)

Ta thấy : \(\left\{{}\begin{matrix}\left(x-1\right)^2\\\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\ge0\forall xy\)

=> \(\left\{{}\begin{matrix}-\left(x-1\right)^2\\-4\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\le7\forall xy\)

Vậy Max = 7 <=> \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)

26 tháng 7 2020
https://i.imgur.com/0AA3SFZ.jpg
30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

10 tháng 10 2019

\(x^2+10x+2\)

\(=x^2+10x+25-23\)

\(=\left(x+5\right)^2-23\ge-23\)

(Dấu "="\(\Leftrightarrow x+5=0\Leftrightarrow x=-5\))

\(x^2+10x+2\)

\(=x^2+10x+25-23\)

\(=\left(x+5\right)^2-23\ge-23\)

Dấu ''='' \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)

7 tháng 11 2017

4-\(x^2\)+2x

=-x\(^2\)+2x-1+5

=-(x\(^2\)-2x+1)+5

=-(x-1)\(^2\)+5

có(x-1)\(^2\)\(\ge\)0\(\forall\)x\(\in\)R

=>-(x-1)\(^2\)\(\le\)0\(\forall\)x\(\in\)R

=>-(x-1)\(^2\)+5\(\le\)5\(\forall\)x\(\in\)R

vậy GTLN của bt trên là 5 \(\Leftrightarrow\)x=1