Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D
Áp dụng BĐT Mincopxki và AM-GM có:
\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)
Khi \(a=b=c=2\)
\(1+\sqrt{\frac{2+\sqrt{3}}{2}}=A\)
\(\sqrt{2}A=\sqrt{2}+\sqrt{\frac{4+2\sqrt{3}}{2}}=\sqrt{2}+\sqrt{\frac{\left(1+\sqrt{3}\right)^2}{2}}=\sqrt{2}+\frac{1+\sqrt{3}}{\sqrt{2}}=\frac{3+\sqrt{3}}{\sqrt{2}}\)
\(A=\frac{3+\sqrt{3}}{\sqrt{2}}:\sqrt{2}=\frac{3+\sqrt{3}}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}=\frac{3+\sqrt{3}}{2}\)
Xét \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}a>0\)
Ta có: \(A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)
\(\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\)
Vì a>0, D>0 nên \(A=\frac{a^2+a+1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)
Áp dụng ta có: \(D=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
\(=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+...+\left(1+\frac{1}{99}-\frac{1}{100}\right)=100-\frac{1}{100}=99,99\)
Bài 1:
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2-4x^2+4x-1=0\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)
Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm.
#)Giải :
a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)
\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)
\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)
\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)
\(=11.2.13.\sqrt{9}-1=286.3-1=857\)
\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)
\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)
\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)
Cho mình xin kết quả rút gọn rồi mình sẽ làm phần so sánh vs 2 cho bạn , thân!
Xét: \(\frac{1}{n\sqrt{n-2}+\left(n-2\right)\sqrt{n}}=\frac{1}{\left(\sqrt{n}-\sqrt{n-2}\right)\sqrt{n\left(n-2\right)}}\)
\(=\frac{\sqrt{n}+\sqrt{n-2}}{2\sqrt{n\left(n-2\right)}}=\frac{1}{2}\left(\frac{\sqrt{n}+\sqrt{n-2}}{\sqrt{n\left(n-2\right)}}\right)\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{n-2}}-\frac{1}{\sqrt{n}}\right)\)
Từ đó ta thay vào:
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{199}}-\frac{1}{\sqrt{121}}\right)\)
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{11}\right)\)
\(C=\frac{1}{2}\cdot\frac{10}{11}=\frac{5}{11}\)
Vậy C = 5/11
Tinh vế sau được 1502/6175
Tổng đuợc 17+1502/6176
Tính tay ta dc: 17.6175+1502/6175=106477/6175