\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)+ \(\frac{\sqrt{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

25 tháng 7 2017

\(\sqrt{-x^2+2x-1}\) có nghĩa khi 

\(-x^2+2x-1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\ge0\) ( luôn đúng)

=> với mọi x biểu thức luôn có nghĩa

b) \(\frac{\sqrt{x+1}}{x}\) có nghĩa khi:

\(\hept{\begin{cases}x+1\ge0\\x\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ne0\end{cases}}\)

c) \(\sqrt{-x^2-2}\)có nghĩa khi 

\(-x^2-2\ge0\Leftrightarrow-\left(x^2-2\right)\ge0\Leftrightarrow x^2-2\le0\Leftrightarrow x^2\le2\Leftrightarrow-2\le x\le2\)

d) \(\sqrt{2x^2-1}\)có nghĩa khi

\(2x^2-1\ge0\Leftrightarrow2x^2\ge1\Leftrightarrow x^2\ge\frac{1}{2}\Leftrightarrow-\frac{1}{2}\ge x\ge\frac{1}{2}\)

13 tháng 8 2015

1)

\(M=\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)

\(=\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{4+2.2.\sqrt{2}+2}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{4-2.2.\sqrt{2}+2}}\)

\(=\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{\left(2+\sqrt{2}\right)^2}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{\left(2-\sqrt{2}\right)^2}}\)

\(=\frac{6+4\sqrt{2}}{2+2\sqrt{2}}+\frac{6-4\sqrt{2}}{-2+2\sqrt{2}}\)

\(=\frac{2.\left(3+2\sqrt{2}\right)}{2.\left(1+\sqrt{2}\right)}+\frac{2.\left(3-2\sqrt{2}\right)}{2.\left(\sqrt{2}-1\right)}\)

\(=\frac{3+2\sqrt{2}}{\sqrt{2}+1}+\frac{3-2\sqrt{2}}{\sqrt{2}-1}\)

\(=\frac{\left(3+2\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\left(3-2\sqrt{2}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)

\(=1+\sqrt{2}+\sqrt{2}-1=2\sqrt{2}\)