K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

Ta có \(sin\alpha+cos\alpha=1\)=>\(cos\alpha=1-sin\alpha=1-0,6=0,4\)

\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,6}{0,4}=1,5\)

2 tháng 6 2019

vo minh khoa \(sin^2\alpha+cos^2\alpha=1\) nhé , chỉnh lại đi

8 tháng 7 2021

\(\dfrac{sina+cosa}{sina-cosa}=\dfrac{\dfrac{sina+cosa}{cosa}}{\dfrac{sina-cosa}{cosa}}=\dfrac{tana+1}{tana-1}=\dfrac{3}{1}=3\)

8 tháng 7 2021

Có \(\dfrac{sin\alpha}{cos\alpha}=tan\alpha=2\)\(\Rightarrow sin\alpha=2cos\alpha\)

\(\dfrac{sin\alpha+cos\alpha}{sin\alpha-cos\alpha}=\dfrac{2cos\alpha+cos\alpha}{2cos\alpha-cos\alpha}=\dfrac{3cos\alpha}{cos\alpha}=3\)

a: cos a=0.8

tan a=0,6/0,8=3/4

b: \(sina=\sqrt{1-0.7^2}=\dfrac{\sqrt{51}}{10}\)

\(tana=\dfrac{\sqrt{51}}{7}\)

c: \(1+tan^2a=\dfrac{1}{cos^2a}=1.64\)

\(\Leftrightarrow cos^2a=\dfrac{25}{41}\)

=>\(cosa=\dfrac{5}{\sqrt{41}}\)

=>\(sina=\sqrt{1-\dfrac{25}{41}}=\sqrt{\dfrac{16}{41}}\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)

\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)

18 tháng 8 2021

a) \(\dfrac{2sina+3cosa}{3sina-4cosa}=\dfrac{9}{5}\)

b) \(\dfrac{sina.cosa}{sin^2a-sina.cosa+cos^2a}=0\)

18 tháng 8 2021


\(a.\dfrac{2\sin\alpha+3\cos\alpha}{3\sin\alpha-4\cos\alpha}=\dfrac{2\left(3cos\alpha\right)+3cos\alpha}{3\left(3cos\alpha\right)-4cos\alpha}=\dfrac{9cos\alpha}{5cos\alpha}=\dfrac{9}{5}\)
\(b.\dfrac{sin\alpha cos\alpha}{sin^2\alpha-sin\alpha cos\alpha+cos^2\alpha}=\dfrac{3cos^2\alpha}{9cos^2\alpha-3cos^2\alpha+cos^2\alpha}=\dfrac{3cos^2\alpha}{7cos^2\alpha}=\dfrac{3}{7}\)