\(\sqrt{ 2x+4)}\)+ 2 \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2019

ĐKXĐ: \(-2\le x\le2\)

Với \(-2\le x\le\frac{2}{3}\Rightarrow6x-4\le0\Rightarrow VT\ge VP\) BPT luôn đúng

- Với \(\frac{2}{3}\le x\le3\) ta có:

\(VT^2=\left(\sqrt{2x+4}+2\sqrt{2-x}\right)^2=12-2x+4\sqrt{2\left(4-x^2\right)}\ge8\)

\(\Rightarrow VT\ge2\sqrt{2}\)

\(VP=\frac{6x-4}{5\sqrt{x^2+1}}< \frac{6x-4}{5}\le\frac{12-4}{5}=\frac{8}{5}< 2\sqrt{2}\)

\(\Rightarrow VT>VP\)

Vậy BPT luôn đúng với mọi \(x\in\left[-2;2\right]\Rightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\) \(\Rightarrow P=-10\)

24 tháng 5 2019

Cm VT2 ≥ 8 như nào vậy bạn, mình không hiểu lắm

31 tháng 3 2017

a) = =

b) = = = . ( Với điều kiện b # 1)

c) \(\dfrac{a^{\dfrac{1}{3}}b^{-\dfrac{1}{3}-}a^{-\dfrac{1}{3}}b^{\dfrac{1}{3}}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)= = = ( với điều kiện a#b).

d) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\) = = = =


 

31 tháng 3 2017

2.

a). = = .

b) = = = b.

c) : = : = a.

d) : = : =



GV
26 tháng 4 2017

Câu a, b thì Nguyễn Quang Duy làm đúng rồi.

c) \(a^{\dfrac{4}{3}}:\sqrt[3]{a}=a^{\dfrac{4}{3}}:a^{\dfrac{1}{3}}=a^{\dfrac{4}{3}-\dfrac{1}{3}}=a\)

d) \(\sqrt[3]{b}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}-\dfrac{1}{6}}=b^{\dfrac{1}{6}}\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2017

a)

Đặt \(\frac{x}{2}=t\Rightarrow 3^{2t}-4=5^t\)

\(\Leftrightarrow 9^t-5^t=4\)

TH1: \(t>1\Rightarrow 9^t-5^t< 4^t\)

\(\Leftrightarrow 9^t< 4^t+5^t\)

\(\Leftrightarrow 1< \left(\frac{4}{9}\right)^t+\left(\frac{5}{9}\right)^t\) \((*)\)

Ta thấy vì \(\frac{4}{9};\frac{5}{9}<1 \), do đó với \(t>1\Rightarrow \left\{\begin{matrix} \left(\frac{4}{9}\right)^t< \frac{4}{9}\\ \left(\frac{5}{9}\right)^t< \frac{5}{9}\end{matrix}\right.\)

\(\Rightarrow \left(\frac{4}{9}\right)^t+\left(\frac{5}{9}\right)^t< \frac{4}{9}+\frac{5}{9}=1\) (mâu thuẫn với (*))

TH2: \(t<1 \) tương tự TH1 ta cũng suy ra mâu thuẫn

do đó \(t=1\Rightarrow x=2\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2017

b)

Ta có: \(5^{2x}=3^{2x}+2.5^x+2.3^x\)

\(\Leftrightarrow (5^{2x}-2.5^{x}+1)=3^{2x}+2.3^x+1\)

\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)

\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)

Dễ thấy \(5^x+3^x>0\forall x\in\mathbb{R}\Rightarrow 5^x-3^x-2=0\)

\(\Leftrightarrow 5^x-3^x=2\)

\(\Leftrightarrow 5^x=3^x+2\)

Đến đây ta đưa về dạng giống hệt phần a, ta thu được nghiệm \(x=1\)

c)

\((2-\sqrt{3})^x+(2+\sqrt{3})^x=4^x\)

\(\Leftrightarrow \left(\frac{2-\sqrt{3}}{4}\right)^x+\left(\frac{2+\sqrt{3}}{4}\right)^x=1\)

TH1: \(x>1\)

\(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}<1;x> 1 \Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x< \frac{2-\sqrt{3}}{4};\left ( \frac{2+\sqrt{3}}{4} \right )^x< \frac{2+\sqrt{3}}{4}\)

\(\Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x+\left ( \frac{2+\sqrt{3}}{4} \right )^x<\frac{2-\sqrt{3}}{4}+\frac{2+\sqrt{3}}{4}=1\) (vô lý)

TH2: \(x<1 \)

\(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}<1; x< 1 \Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x> \frac{2-\sqrt{3}}{4};\left ( \frac{2+\sqrt{3}}{4} \right )^x> \frac{2+\sqrt{3}}{4}\)

\(\Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x+\left ( \frac{2+\sqrt{3}}{4} \right )^x>\frac{2-\sqrt{3}}{4}+\frac{2+\sqrt{3}}{4}=1\) (vô lý)

Do đó \(x=1\)

31 tháng 3 2017

a) Xét hàm số y = f(x)=12x4−3x2+32f(x)=12x4−3x2+32 (C) có tập xác định: D = R

y’ = 2x3 – 6x = 2x(x2 – 3)

y’ = 0 ⇔ x = 0, x = ±√3

Bảng biến thiên:

Đồ thị hàm số:

b)

y’’ = 6x2 – 6x

y’’ = 0 ⇔ 6x2 – 6x = 0 ⇔ x = ± 1

y’(-1) = 4, y’’(1) = -4, y(± 1) = -1

Tiếp tuyến của (C) tại điểm (-1, -1) là : y = 4(x+1) – 1= 4x+3

Tiếp tuyến của (C) tại điểm (1, -1) là: y = -4(x-1) – 1 = -4x + 3

c) Ta có: \(x^4-6x^2+3=m\)\(\Leftrightarrow\dfrac{x^4}{2}-3x^2+\dfrac{3}{2}=\dfrac{m}{2}\).

Số nghiệm của (1) là số giao điểm của (C) và đường thẳng (d) : \(y=\dfrac{m}{2}\).

Dễ thấy:

m < -6: ( 1) vô nghiệm

m = -6 : (1) có 2 nghiệm

-6 < m < 3: (1) có 4 nghiệm

m = 3: ( 1) có 3 nghiệm

m > 3: (1) có 2 nghiệm

 

31 tháng 3 2017

a) Tập xác định : D = R { 1 }. > 0, ∀x 1.

Hàm số đồng biến trên các khoảng : (-; 1), (1 ; +).

b) Tập xác định : D = R { 1 }. < 0, ∀x 1.

Hàm số nghịch biến trên các khoảng : (-; 1), (1 ; +).

c) Tập xác định : D = (- ; -4] ∪ [5 ; +).

∀x ∈ (- ; -4] ∪ [5 ; +).

Với x ∈ (-∞ ; -4) thì y’ < 0; với x ∈ (5 ; +) thì y’ > 0. Vậy hàm số nghịch biến trên khoảng (- ; -4) và đồng biến trên khoảng (5 ; +).

d) Tập xác định : D = R { -3 ; 3 }. < 0, ∀x ±3.

Hàm số nghịch biến trên các khoảng : (- ; -3), (-3 ; 3), (3 ; +).

AH
Akai Haruma
Giáo viên
16 tháng 10 2017

Bài 1:

Đặt \(\left(\frac{3}{2}\right)^x=a\) \((a>0)\)

PT tương đương với:

\(\left(\frac{9}{4}\right)^x-2.\left(\frac{3}{2}\right)^x+m^2=0\)

\(\Leftrightarrow a^2-2a+m^2=0\) (1)

-Trước tiên, để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt \(\rightarrow \) \(\Delta'=1-m^2>0\Leftrightarrow -1< m< 1\)

Áp dụng hệ thức Viete với \(a_1,a_2\) là nghiệm của (1) \(\left\{\begin{matrix} a_1+a_2=2\\ a_1a_2=m^2\end{matrix}\right.\)

-Vì \(a\) luôn dương nên \(\left\{\begin{matrix} a_1+a_2>0\\ a_1a_2>0\end{matrix}\right.\Leftrightarrow m^2>0 \Leftrightarrow m\neq 0\)

-Xét đk cuối cùng, để pt đầu tiên có hai nghiệm trái dấu, tức \(x<0\) hoặc $x>0$ thì \(a<1\) hoặc \(a>1\), hay \((a_1-1)(a_2-1)< 0\)

\(\Leftrightarrow a_1a_2-(a_1+a_2)+1< 0\Leftrightarrow m^2<1\Leftrightarrow -1< m< 1\)

Vậy \(-1< m< 1; m\neq 0\)

AH
Akai Haruma
Giáo viên
16 tháng 10 2017

Bài 2:

Đặt \(2^x=a\Rightarrow \) \(4^x-2m.2^x+2m=0\) tương đương với:
\(a^2-2ma+2m=0\) (1)

Để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt

\(\Rightarrow \Delta'=m^2-2m>0\Leftrightarrow m< 0\) hoặc $m>2$

Áp dugnj hệ thức viete với $a_1,a_2$ là hai nghiệm của phương trình:

\(a_1a_2=2m\Leftrightarrow 2^{x_1}.2^{x_2}=2m\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 8=2m\rightarrow m=4\)

(thỏa mãn)

Vậy \(m=4\)