Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Điều kiện. x > 0
Ta có , khi đó phương trình đã cho trở thành
( log3x) 2 - 4log3x + 2log3x - 3 = 0 hay ( log3x) 2 - 2log3x – 3 = 0 (*)
Đặt t = log3x, suy ra phương trình (*) trở thành : t2 - 2t – 3 = 0
Suy ra t = -1 hoặc t = 3
Với t = -1, ta được
Với t = 3 ta được log3x = 3 hay x2 = 27
Từ đó : P = log3x1 + log27x2 = 0.
Điều kiện : x> 0
Ta có
, khi đó phương trình đã cho trở thành
( log3x)2 - 4log3x+ 2log3x-3= 0 hay ( log3x)2 - 2log3x- 3= 0 (*)
Đặt t= log3x, suy ra phương trình (*) trở thành : t2- 2t-3= 0
Suy ra t= -1 hoặc t= 3
Với t= -1, ta được
Với t= 3 ta được log3x= 3 nên x2= 27
Từ đó ; P= log3x1+ log27x2 = log3 + log2727 = -1+ 1= 0
Chọn A
Chọn A.
Điều kiện:
Phương trình
Do đó S = -1 + log23 = log23 – log22 = log23/2.
Chọn D.
Điều kiện : x> 0
Ta có
và đặt t = log27x
Khi đó, phương trình đã cho trở thành
Với t = 3, ta được log27x = 3 nên x = 39
Với t = 1/3 , ta được
Theo đề bài ra, ta có
Chọn B.
Phương trình đã cho tương đương với: x2- 4x+2= x-4 hay x2- 5x + 6= 0
Từ đó; x= 2 hoặc x= 3
Do đó: S= 24+ 34= 97
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\7^x\ge m\end{matrix}\right.\)
\(\left[{}\begin{matrix}4log_2^2x+log_2x-5=0\\7^x-m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=2^{-\dfrac{5}{4}}\\7^x=m\end{matrix}\right.\)
Với \(m\le0\) thì pt đã cho luôn có đúng 2 nghiệm
Vậy không cần xét tiếp, hiển nhiên là có vô số giá trị thực của m rồi?
Đáp án B.
Ta có
Suy ra x 1 + x 2 = 3 ; x 1 x 2 = 1 và x 1 3 + x 2 3 = ( x 1 + x 2 ) 3 - 3 x 1 x 2 ( x 1 + x 2 ) = 18
Do đó log 2 x 1 3 + x 2 3 - 2 = log 2 16 = 8
Phân tích phương án nhiễu.
Phương án A: Sai do HS tính đúng x 1 3 + x 2 3 - 2 = 16 nhưng lại tính sai log 2 x 1 3 + x 2 3 - 2 = log 2 16 = 4 .
Phương án C: Sai do HS tính sai x 1 + x 2 = - 3 nên x 1 3 + x 2 3 - 2 = - 20 Do đó log 2 x 1 3 + x 2 3 - 2 = log 2 400 .
Phương án D: Sai do HS biến đổi sai
3 x 2 - 3 x + 4 = 27 ⇔ x 2 - 3 x + 4 = 9 ⇔ x 2 - 3 x - 5 = 0
Do đó dẫn đến tính sai x 1 3 + x 2 3 - 2 = 70 .
Suy ra log 2 x 1 3 + x 2 3 - 2 = 2 + log 2 1255 .
\(log_3x-log_5x.log_2x=0\)
\(\Leftrightarrow\frac{log_2x}{log_23}-\frac{log_2x}{log_25}.log_2x=0\)
\(\Leftrightarrow log_2x\left(\frac{1}{log_23}-\frac{log_2x}{log_25}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}log_2x=0\\\frac{1}{log_23}=\frac{log_2x}{log_25}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}log_2x=0\\log_2x=\frac{log_25}{log_23}=log_35\end{matrix}\right.\)
\(\Rightarrow T=log_2\left(x_1x_2\right)=log_2x_1+log_2x_2=0+log_35=log_35\)