\(\in\)N , n\(\ge\)2) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

n=1.2.3...n (Biết n ≥ 2)

  • Số ≥ 2 thì chỉ có (0 , 1 , 2)
  • Mà 1 và 2 có rồi nên chỉ còn lại 0

Nên n= 1.2.3...n 

       n= 1.2.3.0

       n=0

  • Vậy n=0
21 tháng 4 2018

đề sai rùi bạn cho xem lại

21 tháng 3 2021

Giúp mih với 

8 tháng 4 2018

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{n-1}{n!}\)

\(=\left(1-\frac{1}{2!}\right)+\left(\frac{1}{2!}-\frac{1}{3!}\right)+...+\left(\frac{1}{n-1!}-\frac{1}{n!}\right)\)

\(=1-\frac{1}{n!}< 1\)

\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{n-1}{n!}< 1\)

19 tháng 4 2017

Từ đề có:

\(\dfrac{2-1}{2!}\) + \(\dfrac{3-1}{3!}\) + .... + \(\dfrac{2014-1}{2014!}\)

= \(\dfrac{2}{2!}\) - \(\dfrac{1}{2!}\) + \(\dfrac{3}{3!}\) - \(\dfrac{1}{3!}\) + .... + \(\dfrac{2014}{2014!}\) - \(\dfrac{1}{2014!}\)

= 1 - \(\dfrac{1}{2!}\) + \(\dfrac{1}{2!}\) - \(\dfrac{1}{3!}\) + .... + \(\dfrac{1}{2013!}\) - \(\dfrac{1}{2014!}\)

= 1 - \(\dfrac{1}{2014!}\), rứa đủ rồi đúng không ?

Có chi không hiểu mai ta giảng cho nhớ tick đúng nha

19 tháng 4 2017

nhớ tick

9 tháng 5 2018

Gọi tổng trên là A

1/2.2<1/1.2

1/3.3<1/2.3

........

1/n.n<1/(n-1).n

=>A< 1/1.2+1/2.3+.....+1/(n-1).n

=> A<1-1/2+1/2-1/3+....+1/(n-1)-1/n

=> A< 1-1/n<1

=>A<1

9 tháng 5 2018

chúc bạn một kì nghỉ hè vui vẻ