\(b\ne+-3a\) và \(6a^2-15ab+5b^2=0\) .

Khi đó g...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

\(P=\left(4a^2+b^2+4ab-12a-6b+9\right)+\left(3b^2-6b+3\right)\)

\(P=\left(2a+b-3\right)^2+3\left(b-1\right)^2\ge0\)

Đẳng thức xẩy ra khi: \(\left\{\begin{matrix}\left(b-1\right)=0\\2a+b-3=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}b=1\\a=1\end{matrix}\right.\)

Kết luận: GTNN P=0 khi a=b=1

20 tháng 2 2016

[(4a^2 - 12a + 9) + 2b(2a - 3) + b^2] + 3b^2 - 6b + 3

= (2a - 3 + b)^2 + 3(b-1)^2

=> P nhỏ nhất = 0 khi (2a - 3 + b) = 3(b-1) = 0

tick cho mk nhaeoeo

9 tháng 3 2016

lam nhanh giup minh nha minh se tick cho

9 tháng 3 2016

nhiều bài quá mình chỉ làm được bài 1,3,4,5

bài 2 mình đang suy nghĩ

bạn có thể vào Hỏi đáp Toánđể hỏi bài !

19 tháng 2 2016

\(A=\left(2x-4\right)^2-4\left|4-2x\right|+1986=\left(2x-4\right)^2-4\left|2x-4\right|+1986\)

Ta thấy: \(\left|2x-4\right|^2=\left(2x-4\right)^2\)

Đặt t=|2x-4| ta được: t2=(2x-4)2

Suy ra: A=t2-4t+1986=t2-4t+4+1982

=(t-2)2+1982 \(\ge\)1982 (với mọi x)

Dấu "=" xảy ra khi: t=2

<=>|2x-4|=2

Với x\(\ge\)0 ta được: 2x-4=2 <=> x=3

Với x<0 ta được: 4-2x=-2 <=> x=3 (loại)

Vậy GTNN của A là 1982 tại x=3

 

20 tháng 9 2016

3 nhe

24 tháng 2 2016

khó nghĩ mãi vẫn chưa ra

24 tháng 2 2016

A=(x^2-6x+1)/(x^2+x+1)

Ax^2+Ax+A=x^2-6X+1

x^2(A-1)+x(A+6)+A-1=0

delta=b^2-4ac=(A+6)^2-4(A-1)^2>=0

=>A^2+12A+36-4A^2+8A-4>=0

=>-3A^2+20A+32>=0

=>(8-A)(3A+4)>=0

=>-4/3<=A<=8

=> GTLN A=8