Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=\frac{(bc)^3+(2ac)^3+(2ab)^3}{8a^2b^2c^2}=\frac{(bc)^3+(2ac+2ab)^3-3.2ac.2ab(2ac+2bc)}{8a^2b^2c^2}\)
\(=\frac{(bc)^3+(-bc)^3+12a^2b^2c^2}{8a^2b^2c^2}=\frac{12}{8}=1,5\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow a^2+b^2-c^2=-2c^2-2bc-2ac-2ab\)
\(\Leftrightarrow a^2+b^2-c^2=-\left[2c.\left(c+b\right)+2a.\left(c+b\right)\right]\)
\(\Leftrightarrow a^2+b^2-c^2=-2.\left(a+c\right)\left(c+b\right)\)
Tương tự \(b^2+c^2-a^2=-2.\left(a+b\right)\left(a+c\right)\)
\(c^2+a^2-b^2=-2.\left(b+c\right)\left(b+a\right)\)
Đặt \(A=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
\(=-\frac{1}{2}.\left[\frac{1}{\left(b+c\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(b+c\right)\left(a+b\right)}\right]\)
\(=-\frac{1}{2}.\frac{a+b+b+c+a+c}{\left(b+c\right).\left(a+c\right)\left(a+b\right)}=-\frac{1}{2}.\frac{2.\left(a+b+c\right)}{\left(b+c\right).\left(a+c\right).\left(a+b\right)}=0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)
\(\Rightarrow bc+ca+ab=0\)
\(\Rightarrow\hept{\begin{cases}bc=-ac-ab\\ca=-bc-ab\\ab=-bc-ca\end{cases}}\)
\(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ba}\)
\(A=\frac{a^2}{a^2+bc-ac-ab}+\frac{b^2}{b^2+ca-bc-ab}+\frac{c^2}{c^2+ab-bc-ca}\)
\(A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
Mình tiếp tục nhé
\(A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)=\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Vậy A = 1
\(\Leftrightarrow a^2+b^2-2ab+2a-2b=63\)
\(\Leftrightarrow\left(b-a\right)^2-2\left(b-a\right)-63=0 \)
\(\Leftrightarrow\left(b-a\right)^2-9\left(b-a\right)+7\left(b-a\right)-63=0\)
\(\Leftrightarrow\left(b-a\right)\left(b-a-9\right)+7\left(b-a-9\right)=0\)
\(\Leftrightarrow\left(b-a-9\right)\left(b-a+7\right)=0\)
\(\Leftrightarrow b-a-9=0\) hoặc \(b-a+7=0\)
\(\Leftrightarrow b-a=9\) hoặc \(b-a=-7\left(l\right)\) vì b > a