Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1-x+x^2-x^3+...-x^{1999}+x^{2000}\)
\(B=1+x+x^2+x^3+...+x^{1999}+x^{2000}\)
Ta có : \(\left(x^2-1\right).P\left(x\right)=\left(x+1\right)A\left(x-1\right)B\)
\(=\left(x^{2001}+1\right)\left(x^{2001}-1\right)\)
\(=\left(x^{2001}\right)^2-1=\left(x^2\right)^{2001}-1^{2001}\)
\(=\left(x^2-1\right)\left(x^{4000}+x^{3998}+x^{3996}+...+x^2+1\right)\)
\(\Rightarrow P\left(x\right)=x^{4000}+x^{3998}+...+x^2+1\)
Theo đề bài ta có : \(P\left(x\right)=a_o+a_1x+...+a_{4000}x^{4000}\)
Do đó : hệ số chẵn sẽ = 1, hệ số lẻ = 0
\(\Rightarrow a_{2001}=0\)
Chúc bạn học tốt !!
`#3107.101107`
`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`
Ta có:
`x - y - 1 = 0`
`=> x - y = 1`
`D = x^3 - y^3 - 3xy`
`= (x - y)(x^2 + xy + y^2) - 3xy`
`= 1 * (x^2 + xy + y^2) - 3xy`
`= x^2+ xy + y^2 - 3xy`
`= x^2 - 2xy + y^2`
`= x^2 - 2*x*y + y^2`
`= (x - y)^2`
`= 1^2 = 1`
Vậy, với `x - y = 1` thì `D = 1`
________
`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`
`x + y = 5`
`=> (x + y)^2 = 25`
`=> x^2 + 2xy + y^2 = 25`
`=> 2xy = 25 - (x^2 + y^2)`
`=> 2xy = 25 - 17`
`=> 2xy = 8`
`=> xy = 4`
Ta có:
`E = x^3 + y^3`
`= (x + y)(x^2 - xy + y^2)`
`= 5 * [ (x^2 + y^2) - xy]`
`= 5 * (17 - 4)`
`= 5 * 13`
`= 65`
Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`
________
`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`
Ta có:
`x - y = 4`
`=> (x - y)^2 = 16`
`=> x^2 - 2xy + y^2 = 16`
`=> (x^2 + y^2) - 2xy = 16`
`=> 2xy = (x^2 + y^2) - 16`
`=> 2xy = 26 - 16`
`=> 2xy = 10`
`=> xy = 5`
Ta có:
`F = x^3 - y^3`
`= (x - y)(x^2 + xy + y^2)`
`= 4 * [ (x^2 + y^2) + xy]`
`= 4 * (26 + 5)`
`= 4*31`
`= 124`
Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`
Dấu hiệu nhận biết hình chữ nhật:
+ Tứ giác có ba góc vuông là hình chữ nhật.
+ Hình thang cân có một góc vuông là hình chữ nhật.
+ Hình bình hành có một góc vuông là hình chữ nhật.
+ Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.
⇒ Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường chưa đủ điều kiện để là hình chữ nhật.
Chọn đáp án A.
Dấu hiệu nhận biết hình chữ nhật:
+ Tứ giác có ba góc vuông là hình chữ nhật.
+ Hình thang cân có một góc vuông là hình chữ nhật.
+ Hình bình hành có một góc vuông là hình chữ nhật.
+ Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.
⇒ Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường chưa đủ điều kiện để là hình chữ nhật.
Chọn đáp án A.
Đặt góc H=x; góc E=y
=>x=y+10 và x+y=360-60-50=250
=>2y+10=250
=>y=120
=>x=130
Ta có:\(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
\(\Rightarrow a^{2000}+b^{2000}+a^{2002}+b^{2002}=2\left(a^{2001}+b^{2001}\right)\)
\(\Rightarrow a^{2002}-a^{2001}-a^{2001}+a^{2000}+b^{2002}-b^{2001}-b^{2001}+b^{2000}=0\)
\(\Rightarrow a^{2001}\left(a-1\right)-a^{2000}\left(a-1\right)+b^{2001}\left(b-1\right)-b^{2000}\left(b-1\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a^{2001}-a^{2000}\right)+\left(b-1\right)\left(b^{2001}-b^{2000}\right)=0\)
\(\Rightarrow a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)
Dấu"="xảy ra khi \(\orbr{\begin{cases}a^{2000}\left(a-1\right)^2=0\\b^{2000}\left(b-1\right)^2=0\end{cases}}\)Mà \(a,b>0\)
\(\Rightarrow a=b=1\)
Do đó:\(a^{2020}+b^{2020}=1^{2020}+1^{2020}=1+1=2\)