K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2020

\(3sin^4x-\left(1-sin^2x\right)^2=\frac{1}{2}\Leftrightarrow3sin^4x-\left(sin^4x-2sin^2x+1\right)=\frac{1}{2}\)

\(\Leftrightarrow2sin^4x+2sin^2x-\frac{3}{2}=0\) \(\Rightarrow\left[{}\begin{matrix}sin^2x=\frac{1}{2}\\sin^2x=-\frac{3}{2}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow cos^2x=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow B=\left(\frac{1}{2}\right)^2+3\left(\frac{1}{2}\right)^2=1\)

\(4sin^4x+3\left(1-sin^2x\right)^2=\frac{7}{4}\Leftrightarrow4sin^4x+3\left(sin^4x-2sin^2x+1\right)=\frac{7}{4}\)

\(\Leftrightarrow7sin^4x-6sin^2x+\frac{5}{4}=0\Rightarrow\left[{}\begin{matrix}sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\\sin^2x=\frac{5}{14}\Rightarrow cos^2x=\frac{9}{14}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C=3\left(\frac{1}{2}\right)^2+4\left(\frac{1}{2}\right)^2=\frac{7}{4}\\C=3\left(\frac{5}{14}\right)^2+4\left(\frac{9}{14}\right)^2=\frac{57}{28}\end{matrix}\right.\)

NV
17 tháng 5 2020

\(A=\frac{2sin2x-2sin2x.cos2x}{2sin2x+2sin2x.cos2x}=\frac{1-cos2x}{1+cos2x}=\frac{2sin^2x}{2cos^2x}=tan^2x\)

\(B=\frac{2cos4x.sinx}{2cos4x}=sinx\)

Câu C ko dịch được đề

Bài 1: 

a: \(4x^2-4x-2=4x^2-4x+1-3=\left(2x-1\right)^2-3>=-3\forall x\)

Dấu '=' xảy ra khi x=1/2

b: \(x^4+4x^2+1>=1\forall x\)

Dấu '=' xảy ra khi x=0

c: \(2x^2-20x-7\)

\(=2\left(x^2-10x-\dfrac{7}{2}\right)\)

\(=2\left(x^2-10x+25-\dfrac{57}{2}\right)\)

\(=2\left(x-5\right)^2-57>=-57\forall x\)

Dấu '=' xảy ra khi x=5

NV
7 tháng 5 2019

\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)

\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)

\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)

\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(=sin7x\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Lời giải:

a)

\(A=\frac{4\sin ^2a}{1-\cos ^2\frac{a}{2}}=\frac{4\sin ^2a}{\sin ^2\frac{a}{2}}=\frac{4(2\sin \frac{a}{2}\cos \frac{a}{2})^2}{\sin ^2\frac{a}{2}}=16\cos ^2\frac{a}{2}\)

b)

Sử dụng công thức: \(1-\cos 2a=2\sin ^2a; 1+\cos 2a=2\cos ^2a\)\(\sin 2a=2\sin a\cos a\) ta có:

\(B=\frac{1+\cos a-\sin a}{1-\cos a-\sin a}=\frac{2\cos ^2\frac{a}{2}-2\sin \frac{a}{2}\cos \frac{a}{2}}{2\sin ^2\frac{a}{2}-2\sin \frac{a}{2}.\cos \frac{a}{2}}\)

\(=\frac{2\cos \frac{a}{2}(\cos \frac{a}{2}-\sin \frac{a}{2})}{2\sin \frac{a}{2}(\sin \frac{a}{2}-\cos \frac{a}{2})}\)

\(=\frac{-\cos \frac{a}{2}}{\sin \frac{a}{2}}=-\cot \frac{a}{2}\)

c) \(45-\frac{\pi}{2}\)??? sao đơn vị nó không thống nhất vậy?

30 tháng 4 2019

Câu c em không biết, đầu bài nó ghi như thế ạ