Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
\(B=1-\frac{1}{2^{99}}< 1\left(đpcm\right)\)
\(B=\frac{1}{2}+\frac{1^2}{2^2}+\frac{1^3}{2^3}+........+\frac{1^{99}}{2^{99}}\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{99}}\right)\)
=>B=\(1-\frac{1}{2^{98}}\Rightarrow B
đặt A=1/2+(1/2)^2+(1/2)^3+...+(1/2)^98+(1/2)^99+(1/2)^99
=>A=1/2+12/22+13/23+...+198/298+199/299+199/299
=>A=1/2+1/22+1/23+...+1/298+1/299+1/299
=>2A-1/299=1+1/2+1/22+...+1/298
=>(2A-1/299)-(A-1/299)=(1+1/2+1/22+...+1/298)-(1/2+1/22+1/23+...+1/298+1/299)
=>(2A-1/299)-(A-1/299)=1-1/299
=>A=1-1/299 +1/299=1
vậy A=1
chắc thế
Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{99}}\)
\(\Rightarrow A=1-\frac{1}{2^{99}}=\frac{2^{99}-1}{2^{99}}\)
B = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
B = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
2B - B = \(1-\frac{1}{2^{99}}\)
=> B = \(1-\frac{1}{2^{99}}