\(B=\frac{1}{2^2} +\frac{1}{3^2}+.....+\frac{1}{2019^2}\)

chứng tỏ rằng B ko phải l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2019

Câu hỏi của Nguyễn Mai Anh - Toán lớp 6 - Học toán với OnlineMath:bạn tham khảo nhé.chỉ khác ở chỗ 45 với 2019 thôi !

15 tháng 5 2019

Ta thấy :

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(.........................\)

\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)

\(\Leftrightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

\(\Leftrightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}=\frac{2018}{2019}\)

Mà \(0< B< 1\)nên \(B\)không phải là số tự nhiên

~ Hok tốt ~

7 tháng 3 2021

ko bít

7 tháng 3 2021

CHỊU THÔI KO BÍT :-D

22 tháng 3 2019

Mk cần trước 23 h nha. Ai nhanh mk cho 3 k

22 tháng 3 2019

Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??

11 tháng 5 2020

Ta có bài toán tổng quát sau:Chứng minh rằng tổng \(A=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}\)(n số hạng và n>1) không phải là số nguyên dương ta có:

\(1=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+...+\frac{n+1}{n^2+3}< \frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}< \frac{n+1}{n^2}+\frac{n+1}{n^2}\)\(+....+\frac{n+1}{n^2}=2\)

Do đó A không phải là số nguyên dương với n=2019 thì ta có bài toán đã cho

5 tháng 5 2018

bài kia thiếu oy : 0 < 1 nhưng 0 vẫn là số tự nhiên :v

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) 

+ vì các phân số trên đều là phân số dương nên tổng của chúng > 0        

=> M > 0                      (1)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

.....

\(\frac{1}{2010^2}< \frac{1}{2009\cdot2010}\)

nên \(M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2009\cdot2010}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(\Rightarrow M< 1-\frac{1}{2010}\)

\(\Rightarrow M< 1\)    (2)

\(\left(1\right)\left(2\right)\Rightarrow0< M< 1\)

=> M không phải là số tự nhiên

5 tháng 5 2018

\(M=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2009.2009}+\frac{1}{2010.2010}\)

\(M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(M< 1-\frac{1}{2010}\)

=> M < 1(vì 1 trừu đi số nào cũng bé hơn nó)

=> M không phải là số tự nhiên 

DD
24 tháng 8 2021

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(=2-\frac{1}{2012}< 2\)

mà \(S>1\)

do đó ta có đpcm. 

25 tháng 1 2017

chịu lun

mk chỉ biết tính tổng ra 

rồi chứng tỏ thôi

chúc bn học giỏi!

thanks@

5 tháng 8 2017

vì 1/2+1/3+1/4+1/5+1/6+.....+1/11=2,0198765(3)>2 => A>2