Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đặt \(f\left(x\right)=x^3+mx^2+\left(m-3\right)x-1\)
Ta có \(f\left(0\right)=-1\) ; \(f\left(-1\right)=1\)
\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)
Mặt khác \(\left\{{}\begin{matrix}f\left(0\right)=-1< 0\\\lim\limits_{x\rightarrow+\infty}=+\infty\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
\(\left\{{}\begin{matrix}f\left(-1\right)=1>0\\\lim\limits_{x\rightarrow-\infty}=-\infty\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)
Vậy pt đã cho có 3 nghiệm phân biệt với mọi m
Câu 2:
\(f'\left(x\right)=x^2+2\left(m-1\right)x+m+1\)
Để \(f'\left(x\right)\ge0\) \(\forall x\) \(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m+1\right)\le0\)
\(\Leftrightarrow m^2-3m\le0\Leftrightarrow0\le m\le3\)
Câu 3:
Nhận thấy \(x=0\) không phải nghiệm
\(\Leftrightarrow2x^3+3x^2-2=-mx\)
\(\Leftrightarrow\frac{2x^3+3x^2-2}{x}=-m\)
Đặt \(f\left(x\right)=\frac{2x^3+3x^2-2}{x}\Rightarrow f'\left(x\right)=\frac{\left(6x^2+6x\right)x-\left(2x^3+3x^2-2\right)}{x^2}=\frac{4x^3+3x^2+2}{x^2}\)
\(f'\left(x\right)=\frac{4x^2\left(x+1\right)+2-x^2}{x^2}\Rightarrow f'\left(x\right)>0\) \(\forall x\in\left(-1;1\right)\)
\(\Rightarrow f\left(x\right)\) đồng biến trên \(\left(-1;1\right)\)
\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=+\infty\) ; \(\lim\limits_{x\rightarrow0^+}f\left(x\right)=-\infty\)
\(\Rightarrow y=-m\) luôn cắt đồ thị \(y=f\left(x\right)\) hay phương trình đã cho luôn có ít nhất 1 nghiệm trong khoảng \(\left(-1;1\right)\) với mọi m
a/ Đề không rõ ràng bạn
Từ câu b trở đi, dễ dàng nhận ra tất cả các hàm số đều liên tục trên R
b/ Xét \(f\left(x\right)=x^3+3x^2-1\)
Ta có: \(f\left(-3\right)=-1\) ; \(f\left(-2\right)=3\)
\(\Rightarrow f\left(-3\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-3;-2\right)\)
\(f\left(0\right)=-1\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;0\right)\)
\(f\left(1\right)=3\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(0;1\right)\)
\(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm phân biệt
c/\(f\left(x\right)=m\left(x-1\right)^3\left(m^2-4\right)+x^4-3\)
\(f\left(-2\right)=13\) ; \(f\left(1\right)=-2\)
\(\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;1\right)\)
\(f\left(2\right)=13\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(1;2\right)\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm
d/ \(f\left(x\right)=5sin3x+x-10\)
\(f\left(0\right)=-10\)
\(f\left(4\pi\right)=4\pi-10\)
\(\Rightarrow f\left(0\right).f\left(4\pi\right)=-10\left(4\pi-10\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;4\pi\right)\) hay \(f\left(x\right)\) luôn có nghiệm
\(f'\left(x\right)=x^2+x+1\) luôn lớn hơn 0 mà :3 vậy f'(x) \(\le\)0 là k có :3
f'(x)= tính thế nào? hay là tính sai
nếu đúng vậy chọn PA (A) rỗng
1.
Hàm tuần hoàn với chu kì \(2\pi\) nên ta chỉ cần xét trên đoạn \(\left[0;2\pi\right]\)
\(y'=\frac{-4}{\left(cosx-2\right)^2}.sinx=0\Leftrightarrow x=k\pi\)
\(\Rightarrow x=\left\{0;\pi;2\pi\right\}\)
\(y\left(0\right)=-3\) ; \(y\left(\pi\right)=\frac{1}{3}\) ; \(y\left(2\pi\right)=-3\)
\(\Rightarrow\left\{{}\begin{matrix}M=\frac{1}{3}\\m=-3\end{matrix}\right.\)
\(\Rightarrow9M+m=0\)
2.
\(\Leftrightarrow y.cosx+y.sinx+2y=2k.cosx+k+1\)
\(\Leftrightarrow y.sinx+\left(y-2k\right)cosx=k+1-2y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\Rightarrow y^2+\left(y-2k\right)^2\ge\left(k+1-2y\right)^2\)
\(\Leftrightarrow2y^2-4k.y+4k^2\ge4y^2-4\left(k+1\right)y+\left(k+1\right)^2\)
\(\Leftrightarrow2y^2-4y-3k^2+2k+1\le0\)
\(\Leftrightarrow2\left(y-1\right)^2\le3k^2-2k+1\)
\(\Leftrightarrow y\le\sqrt{\frac{3k^2-2k+1}{2}}+1\)
\(y_{max}=f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3k^2-2k+1}+1\)
\(f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3\left(k-\frac{1}{3}\right)^2+\frac{2}{3}}+1\ge\frac{1}{\sqrt{3}}+1\)
Dấu "=" xảy ra khi và chỉ khi \(k=\frac{1}{3}\)
Đáp án A
1.
\(m.tanx+\frac{1}{tanx}-3=0\)
\(\Leftrightarrow m.tan^2x-3tanx+1=0\)
Với \(m=0\) thỏa mãn
Với \(m\ne0\Rightarrow\Delta=9-4m\ge0\Rightarrow m\le\frac{9}{4}\)
Chắc đề đúng là "giá trị nguyên"? Như vậy có 2023 giá trị nguyên thỏa mãn
2.
Chắc đề đúng là khi \(x\in\left[\frac{\pi}{3};\frac{2\pi}{3}\right]\)
\(\Leftrightarrow2\left(1-cos^2x\right)-cosx+1-2m=0\)
\(\Leftrightarrow-2cos^2x-cosx+3=2m\)
Đặt \(cosx=t\Rightarrow-\frac{1}{2}\le t\le\frac{1}{2}\)
Xét hàm \(f\left(t\right)=-2t^2-t+3\) trên \(\left[-\frac{1}{2};\frac{1}{2}\right]\)
\(f\left(-\frac{1}{2}\right)=3\) ; \(f\left(\frac{1}{2}\right)=2\) ; \(f\left(-\frac{1}{4}\right)=\frac{25}{8}\)
\(\Rightarrow2\le2m\le\frac{25}{8}\Rightarrow1\le m\le\frac{25}{16}\)