K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Áp dụng Bđt Bunhiacopski ta có:

\(\left(2a^2+3b^2\right)\left(2+3\right)\ge\left(2a+3b\right)^2=5^2=25\)

\(\Rightarrow5\left(2a^2+3b^2\right)\ge25\)

\(\Rightarrow2a^2+3b^2\ge5\)(Đpcm)

Dấu = khi a=b=1

25 tháng 10 2016

Ta có

\(a=2,5-1,5b\)

Thế vào ta được BĐT ta được

2b2 - 2b + 1 > 0

<=> (b - 1)2 + b2 > 0 (đúng)

Vậy BĐT là đúng

10 tháng 10 2021

\(\left(\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}\right)^2\\ =\dfrac{a+\sqrt{a^2-b}+a-\sqrt{a^2-b}}{2}+2\sqrt{\dfrac{\left(a+\sqrt{a^2-b}\right)\left(a-\sqrt{a^2-b}\right)}{4}}\\ =\dfrac{2a}{2}+2\sqrt{\dfrac{a^2-a^2+b}{4}}\\ =a+2\sqrt{\dfrac{b}{4}}=a+\dfrac{2\sqrt{b}}{2}=a+\sqrt{b}\\ \Rightarrow\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}=\sqrt{a+\sqrt{b}}\)

25 tháng 2 2018

a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ca) ; thay giả thiết a+b+c = 3 ta có: 

a³+b³+c³ = 3(a²+b²+c² -ab-bc-ca + abc) (1) 

* từ giả thiết 0 ≤ a, b, c ≤ 2 => (2-a)(2-b)(2-c) ≥ 0 

⇔ 8 -4a-4b-4c + 2ab+2bc+2ca -abc ≥ 0 (lại thay a+b+c = 3) 

⇒ abc ≤ 2ab+2bc+2ca - 4 (2)

Dấu '=' khi có 1 số = 2 

thay (1) vào (2) ta có: 

a³+b³+c³ ≤ 3(a²+b²+c² +ab+bc+ca - 4) = 3[(a+b+c)² - ab-bc-ca -4] = 3(5-ab-bc-ca) (3) 

Mặt khác cũng từ (2) ta có: 2(ab+bc+ca) ≥ abc+4 ≥ 4 

⇒ -ab-bc-ca ≤ -2 (dấu "=" khi có 1 số = 0) thay vào (3) ta có 

a³+b³+c³ ≤ 3(5-ab-bc-ca) ≤ 9 (đpcm) 

Mới lớp 8 nên không hiểu biết rộng về lớp 9 sai bỏ qua 

14 tháng 6 2021

Thấy : \(a;b;c\ge0;a+b+c=1\)  \(\Rightarrow1-a;1-b;1-c\ge0\)

AD BĐT AM - GM ta được :  \(4\left(1-a\right)\left(1-c\right)\le\left(2-a-c\right)^2=\left[2-\left(1-b\right)\right]^2=\left(b+1\right)^2\)

\(\Rightarrow4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(1-b\right)\left(b+1\right)^2=\left(1-b^2\right)\left(b+1\right)\le1.\left(b+1\right)=b+1=b+\left(a+b+c\right)=a+2b+c\)

( đpcm ) 

26 tháng 2 2018

PT vô nghiệm <=> 0 < a < b

=> c > 0 và 4ac > b2

=> 4ac - 2bc + c2 > b2 - 2bc + c2 = (b - c)2 

=> 4ac - 2bc + c2 > 0 

=> 4a - 2b + c > 0

=> a + b + c > -3a + 3b

=> (a + b + c)/(b - a) > 3 (ĐPCM)