K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

+) Tuyên Quang:

Số giờ nắng trung bình \(\overline x  = \frac{{25 + 89 + 72 + 117 + 106 + 177 + 156 + 203 + 227 + 146 + 117 + 145}}{{12}} = 131,67\)

Phương sai: \({S^2} = \frac{1}{{12}}\left( {{{25}^2} + {{89}^2} + ... + {{145}^2}} \right) - 131,{67^2} \approx 2921,2\)

Độ lệch chuẩn \(S = \sqrt {2921,2}  \approx 54\)

+) Cà Mau:

Số giờ nắng trung bình \(\overline x  = \frac{{180 + 223 + 257 + 245 + 191 + 111 + 141 + 134 + 130 + 122 + 157 + 173}}{{12}} = 172\)

Phương sai: \({S^2} = \frac{1}{{12}}\left[ {\left( {{{180}^2} + {{223}^2} + ... + {{173}^2}} \right) - {{172}^2}} \right] = 2183\)

Độ lệch chuẩn \(S = \sqrt {2183}  = 46,7\)

=> Nhận xét: Ở Tuyên Quang tổng số giờ nắng theo từng tháng thay đổi nhiều hơn so với ở Cà Mau.

25 tháng 12 2017

x ≈   32   n g ư ờ i ,   s 2 ≈   219 , 5 ;   s   ≈   15   n g ư ờ i

14 tháng 5 2017

Điểm số của xạ thủ A có:

x   ≈   8 , 3   đ i ể m ,   s 1 2 ≈   1 , 6 ;   s 1   ≈   1 , 27 .

Điểm số của xạ thủ B có

y   ≈   8 , 4   đ i ể m ,   s 2 2 ≈   1 , 77 ;   s 2   ≈   1 , 27 .

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

+) Tỉnh Lai Châu: Xét mẫu số liệu đã sắp xếp là:

\(\begin{array}{*{20}{c}}{14,2}&{14,8}&{18,6}&{18,8}&{20,3}&{21,0}&{22,7}&{23,5}&{23,6}&{24,2}&{24,6}&{24,7}\end{array}\)

 Khoảng biến thiên của mẫu số liệu là: \(R = 24,7 - 14,2 = 10,5.\)

Cỡ mẫu là \(n = 12\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 21,85.\)

Tứ phân vị thứ nhất là trung vị của mẫu: \(\begin{array}{*{20}{c}}{14,2}&{14,8}&{18,6}&{18,8}&{20,3}&{21,0}\end{array}\). Do đó \({Q_1} = 18,7.\)

Tứ phân vị thứ ba là trung vị của mẫu: \(\begin{array}{*{20}{c}}{22,7}&{23,5}&{23,6}&{24,2}&{24,6}&{24,7}\end{array}\). Do đó \({Q_3} = 23,9\)

Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 23,9 - 18,7 = 5,2\)

+) Tỉnh Lâm Đổng: Xét mẫu số liệu đã sắp xếp là:

\(16,0\;\;16,3\;\;17,4\;\;17,5\;\;18,5\;\;18,6\;\;18,7\;\;19,3\;\;19,5\;\;19,8\;\;20,2\;\;20,3\)

Khoảng biến thiên của mẫu số liệu là: \(R = 20,3 - 16,0 = 4,3.\)

Cỡ mẫu là \(n = 12\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 18,65.\)

Tứ phân vị thứ nhất là trung vị của mẫu: \(\begin{array}{*{20}{c}}{16,0}&{16,3}&{17,4}&{17,5}&{18,5}&{18,6}\end{array}\). Do đó \({Q_1} = 17,45.\)

Tứ phân vị thứ ba là trung vị của mẫu: \(\begin{array}{*{20}{c}}{18,7}&{19,3}&{19,5}&{19,8}&{20,2}&{20,3}\end{array}\). Do đó \({Q_3} = 19,65\)

Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 19,65 - 17,45 = 2,2\)

1 tháng 6 2017

Đáp án: 36,7%

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Năm 2019:

+) Số trung bình: \(\overline x  = \frac{{54 + 22 + 24 + 30 + 35 + 40 + 31 + 29 + 29 + 37 + 40 + 31}}{{12}} = 33,5\)

+) Phương sai \({S^2} = \frac{1}{{12}}\left( {{{54}^2} + {{22}^2} + ... + {{31}^2}} \right) - 33,{5^2} = 67,25\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 8,2\)

+) Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 22, 24, 29, 29, 30, 31, 31, 35, 37, 40, 40, 54

\({Q_2} = {M_e} = \frac{1}{2}(31 + 31) = 31\)

\({Q_1}\) là trung vị của nửa số liệu: 22, 24, 29, 29, 30, 31. Do đó \({Q_1} = 29\)

\({Q_3}\) là trung vị của nửa số liệu: 31, 35, 37, 40, 40, 54. Do đó \({Q_3} = 38,5\)

\( \Rightarrow {\Delta _Q} = 38,5 - 29 = 9,5\)

Năm 2020:

+) Số trung bình: \(\overline x  = 34,5\)

+) Phương sai \({S^2} = \frac{1}{{12}}\left( {{{45}^2} + {{28}^2} + ... + {{37}^2}} \right) - 34,{5^2} = 15,75\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 3,97\)

+) Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 28, 31, 32, 33, 33, 34, 34, 35, 35, 37, 37, 45.

\({Q_2} = {M_e} = \frac{1}{2}(34 + 34) = 34\)

\({Q_1}\) là trung vị của nửa số liệu: 28, 31, 32, 33, 33, 34. Do đó \({Q_1} = 32,5\)

\({Q_3}\) là trung vị của nửa số liệu: 34, 35, 35, 37, 37, 45. Do đó \({Q_3} = 36\)

\( \Rightarrow {\Delta _Q} = 36 - 32,5 = 3,5\)

b) Nhận xét:

So sánh số trung bình: số lượng bán ra trung bình theo tháng không tăng nhiều so với năm trước (tăng 1)

So sánh độ lệch chuẩn: Số lượng xe bán ra năm 2020 không có sự chênh lệch quá nhiều giữa các tháng.

=> Tác động của chiến lược: Số lượng xe bán ra tăng ít, nhưng đồng đều giữa các tháng.

19 tháng 2 2017

a) Bảng 6:

Lớp nhiệt độ (ºC) Tần suất (%) Giá trị đại diện
[15; 17] 16,7 16
[17; 19) 43,3 18
[19; 21) 36,7 20
[21; 23] 3,3 22
Cộng 100 (%)  

Số trung bình cộng của bảng 6 là:

Giải bài tập Toán 10 | Giải Toán lớp 10

Số trung bình cộng của bảng 8 là:

Giải bài tập Toán 10 | Giải Toán lớp 10

b) Nhiệt độ trung bình của thành phố Vinh trong tháng 12 cao hơn nhiệt độ trung bình trong tháng 2 khoảng 0,6ºC.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Đội A:

+) Số trung bình: \(\overline x  = \frac{{28 + 24 + 26 + 25 + 25 + 23 + 20 + 29 + 21 + 24 + 24}}{{11}} = 24,45\)

+) Mốt: \({M_o} = 24\)

+) Phương sai \({S^2} = \frac{1}{{11}}\left( {{{28}^2} + {{24}^2} + ... + {{24}^2}} \right) - 24,{45^2} = 6,65\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 2,58\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 20, 21, 23, 24, 24, 24, 25, 25, 26, 28, 29

\({Q_2} = {M_e} = 24\)

\({Q_1}\) là trung vị của nửa số liệu: 20, 21, 23, 24, 24. Do đó \({Q_1} = 23\)

\({Q_3}\) là trung vị của nửa số liệu: 25, 25, 26, 28, 29. Do đó \({Q_3} = 26\)

Đội B:

+) Số trung bình: \(\overline x  = \frac{{32 + 20 + 19 + 21 + 28 + 29 + 21 + 22 + 29 + 19 + 29}}{{11}} = 24,45\)

+) Mốt: \({M_o} = 29\)

+) Phương sai \({S^2} = \frac{1}{{11}}\left( {{{32}^2} + {{20}^2} + ... + {{29}^2}} \right) - 24,{45^2} = 22,12\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 4,7\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 19, 19, 20, 21, 21, 22, 28, 29, 29, 29, 32.

\({Q_2} = {M_e} = 22\)

\({Q_1}\) là trung vị của nửa số liệu: 19, 19, 20, 21, 21. Do đó \({Q_1} = 20\)

\({Q_3}\) là trung vị của nửa số liệu: 28, 29, 29, 29, 32. Do đó \({Q_3} = 29\)

b)

Ta so sánh độ lệch chuẩn \(2,58 < 4,7\) do dó đội A có độ tuổi đồng đều hơn.

Chú ý

Ta không so sánh số trung vị vì không có giá trị nào quá lớn hay quá nhỏ so với các giá trị còn lại.

17 tháng 5 2017

Thống kê

Thống kê

Cho các số liệu thống kê được ghi trong hai bảng saua) Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 1 với các lớp là[630; 635) ; [635;640) ; [640; 645) ; [645; 650) ; [650; 655)b) Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 2 với các lớp là:[638;642) ; [642; 646) ; [646;650) ; [650; 654] ;c) Mô tả bảng phân bố tần suất ghép lớp đã được lập ở câu a) bằng cách vẽ biểu đồ tần...
Đọc tiếp

Cho các số liệu thống kê được ghi trong hai bảng sau

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

a) Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 1 với các lớp là

[630; 635) ; [635;640) ; [640; 645) ; [645; 650) ; [650; 655)

b) Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 2 với các lớp là:

[638;642) ; [642; 646) ; [646;650) ; [650; 654] ;

c) Mô tả bảng phân bố tần suất ghép lớp đã được lập ở câu a) bằng cách vẽ biểu đồ tần suất hình cột và đường gấp khúc tần suất

d) Mô tả bảng phân bố tần suất ghép lớp đã được lập ở câu b) bằng cách vẽ biểu đồ tần số hình cột và đường gấp khúc tần số

e) Tính số trung bình cộng, phương sai và độ lệch chuẩn của các bảng phân bố đã lập được

Từ đó, xét xem nhóm cá nào có khối lượng đồng đều hơn

1
12 tháng 10 2017

a) Bảng phân bố tần số và tần suất:

Nhóm cá thứ I Tần số Tần suất
[630;635) 1 4,2%
[635;640) 2 8,3%
[640;645) 3 12,5%
[645;650) 6 25%
[650;655] 12 50%
Cộng 24 100%

b) Bảng phân bố tần số và tần suất:

Nhóm cá thứ I Tần số Tần suất
[638;642) 5 18,52%
[642;646) 9 33,33%
[646;650) 1 3,7%
[650;654) 12 44,45%
Cộng 27 100%

c) Biểu đồ tần suất hình cột:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Đường gấp khúc tần suất

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

d) Biểu đồ tần số

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Đường gấp khúc tần số

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

e) * Xét bảng phân bố ở câu a)

- Số trung bình:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Phương sai:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Độ lệch chuẩn:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

* Xét bảng phân bố ở câu b):

- Số trung bình:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Phương sai:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Độ lệch chuẩn:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Nhận thấy s2 < s1 nên nhóm cá thứ hai có khối lượng đồng đều hơn.