K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a)

Bước 1: Biểu diễn diện tích x chiếc ghế và y chiếc bàn.

Diện tích của x chiếc ghế là \(0,5x\left( {{m^2}} \right)\) và y chiếc bàn là \(1,2y\left( {{m^2}} \right)\)

Bước 2: Biểu diễn diện tích lưu thông và cho lớn hơn hoặc bằng 12 \({m^2}\).

Tổng diện tích x chiếc ghế và y chiếc bàn là \(0,5x + 1,2y\left( {{m^2}} \right)\)

Diện tích lưu thông là \(60 - 0,5x - 1,2y\left( {{m^2}} \right)\)

Bất phương trình cần tìm là

\(\begin{array}{l}60 - 0,5x - 1,2y \ge 12\\ \Leftrightarrow 0,5x + 1,2y \le 48\end{array}\)

b)

+) Thay x=10, y=10 ta được

\(0,5.10 + 1,2.10 = 17 \le 48\)

=> (10;10) là nghiệm của bất phương trình

+) Thay x=10, y=20 ta được

 \(0,5.10 + 1,2.20 = 29 \le 48\)

=> (10;20) là nghiệm của bất phương trình

+) Thay x=20, y=10 ta được

 \(0,5.20 + 1,2.10 = 22 \le 48\)

=> (20;10) là nghiệm của bất phương trình

Chú ý

Ta có thể lấy các giá trị khác để thay vào, nếu thỏa mãn bất phương trình thì đó là nghiệm.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Số vé ghế ngồi là 2 (loại vé)

Số vé giường nằm là 2 + 3 = 5 (loại vé)

b) Số loại vé để bạn An lựa chọn là:

2 + 5 = 7 (loại vé)

10 tháng 12 2021


 

10 tháng 12 2021

900000 đồng là giá gốc, thì mình tìm 100%
Giải
Cửa hàng bán chiếc xe với giá là:900000 : 20 x 100 = 4500000( đồng )
Đấp số : 4500000 đồng

27 tháng 9 2023

a) Cỡ áo: S, M, L, XL, XXL (5 loại cỡ).

Màu áo: trắng, xanh, đen (3 loại màu áo).

Ta có thể vẽ sơ đồ hình cây biểu thị các loại áo sơ mi với màu và cỡ áo nói trên như sau:

Một hãng thời trang đưa ra một mẫu áo sơ mi mới có ba màu: trắng, xanh, đen. Mỗi loại có các cỡ S, M, L, XL, XXL

Hoặc ta cũng có thể vẽ sơ đồ cây trên dưới dạng sau:

 

Một hãng thời trang đưa ra một mẫu áo sơ mi mới có ba màu: trắng, xanh, đen. Mỗi loại có các cỡ S, M, L, XL, XXL

b) Việc mua tất cả các loại áo sơ mi là việc thực hiện hai hành động liên tiếp: chọn màu áo và chọn cỡ áo.

+ Chọn màu áo: có 3 cách chọn.

+ Chọn cỡ áo: có 5 cách chọn.

Vậy cần mua tất cả 3 . 5 = 15 chiếc áo sơ mi.

D
datcoder
CTVVIP
27 tháng 9 2023

Lưu ảnh về rồi tải lên bạn ơi chứ đừng copy nguyên ảnh như vậy.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Kết luận: Từ sơ đồ cây, ta thấy bạn Dương có 12 cách chọn một bộ quần áo và một đôi giày.

 

22 tháng 12 2023

12 cách đó là: giày đỏ, giày đen, x 6 lần

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong...
Đọc tiếp

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong một tháng cửa hàng cần nhập số máy tính loại A là x và số máy tính loại B là y.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (triệu đồng) là lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B. Hãy biểu diễn F theo x và y.

c) Tìm số lượng máy tính mỗi loại cửa hàng cần nhập về trong tháng đó đề lợi nhuận thu được là lớn nhất.

2
24 tháng 9 2023

Tham khảo:

 

a)

Bước 1: Ta có:

 

Loại A

Loại B

Giá mua vào

10 triệu đồng/1 máy

20 triệu đồng/1 máy

Lợi nhuận

2,5 triệu đồng/1 máy

4 triệu đồng/1 máy

Bước 2: Lập hệ bất phương trình

Vì số lượng máy là số tự nhiên nên ta có \(x \ge 0;y \ge 0\)

Vốn nhập vào x máy loại A và y máy loại B là \(10x + 20y\)(triệu đồng)

4 tỉ đồng=4000 (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có bất phương trình

\(10x + 20y \le 4000\) \( \Leftrightarrow x + 2y \le 400\)

Vì tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy nên ta có \(x + y \le 250\).

Vậy ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + 2y \le 400\\x + y \le 250\end{array} \right.\)

Bước 3: Xác định miền nghiệm

Miền nghiệm là tứ giác OABC với tọa độ các đỉnh này là O(0;0), A(250;0), B(100;150), C(0;200)

b) Lợi nhuận hàng tháng là F(x;y)=2,5x+4y(triệu đồng)

c) Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + 2y \le 400\\x + y \le 250\end{array} \right.\)

Ta có F(0;0)=0, F(250;0)=2,5.250+4.0=625

F(100;150)=2,5.100+4.150=850

F(0;200)=2,5.0+4.200=800

Giá trị lớn nhất là F(100;150)=850.

Vậy cửa hàng cần đầu tư kinh doanh 100 máy A và 150 máy B.

24 tháng 9 2023

a) Số máy tính loại A cửa hàng cần nhập trong một tháng là x (máy), số máy tính loại B cửa hàng cần nhập trong một tháng là y (máy) (x,y≥0).

Do tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy: x + y ≤ 250

Tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì mỗi chiếc máy tính loại A có giá 10 triệu và mỗi máy tính loại B có giá 20 triệu nên tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có: 10x + 20y ≤ 4 000 hay x + 2y ≤ 400.

Ta có hệ bất phương trình: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x+y\le250\\x+2y\le400\end{matrix}\right.\)

Ta xác định miền nghiệm của hệ bất phương trình trên:

+) Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).

+) Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1).

+) Xác định miền nghiệm D3 của bất phương trình x + y ≤ 250.

- Vẽ đường thẳng d: x + y = 250.

- Vì 0 + 0 = 0 < 250 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 250

Do đó miền nghiệm D3 của bất phương trình x + y ≤ 250 là nửa mặt phẳng bờ d chứa gốc tọa độ.

+) Xác định miền nghiệm D4 của bất phương trình x + 2y ≤ 400.

- Vẽ đường thẳng d’: x + 2y  = 400.

- Vì 0 + 2.0 = 0 < 400 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + 2y < 400

Do đó miền nghiệm D4 của bất phương trình x + 2y < 400 là nửa mặt phẳng bờ d’ chứa gốc tọa độ.

Miền nghiệm của hệ bất phương trình trên là tứ giác OABC với O(0;0), A(0; 200), C(100;150), B(250;0)

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt (ảnh 1)

b) Lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B là: F(x;y) = 2,5x + 4y (triệu đồng).

Vậy F(x;y) = 2,5x + 4y.

c) Bài toán chuyển về tìm giá trị lớn nhất của F(x;y) với (x;y) thuộc miền nghiệm của hệ bất phương trình \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x+y\le250\\x+2y\le400\end{matrix}\right.\)

Người ta đã chứng minh được, giá trị F(x; y) lớn nhất tại (x; y) là tọa độ của một trong bốn đỉnh O; A; B; C.

Tại O(0; 0), ta có: F(0; 0) = 2,5 . 0 + 4 . 0 = 0;

Tại A(0; 200), ta có: F(0; 200) = 2,5 . 0 + 4 . 200 = 800;

Tại B(100; 150), ta có: F(100; 150) = 2,5 . 100 + 4 . 150 = 850;

Tại B(250; 0), ta có: F(250; 0) = 2,5 . 250 + 4 . 0 = 625.

Do đó F(x;y) lớn nhất bằng 850 tại x = 100 và y = 150.

Vậy cửa hàng cần nhập 100 máy loại A, 150 máy loại B để cửa hàng thu được lợi nhuận lớn nhất là 850 triệu đồng.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Mỗi cách sắp xếp 5 bạn học sinh vào 5 chiếc ghế là một hoán vị của 5 bạn học sinh. Do đó, số cách sắp xếp 5 bạn học sinh ngồi vào 5 cái ghế là hoán vị là:

                   \({P_5} = 5!\) (cách)

b) Khi bạn Nga nhất định ngồi vào chiếc ghế ngoài cùng bên trái, thì số cách sắp xếp là số cách sắp xếp 4 bạn còn lại vào 4 chiếc ghế, mỗi cách như vậy là một hoán vị của 4 bạn học sinh. Do đó, số cách sắp xếp là:

                             \({P_4} = 4! = 24\) (cách)