Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
P1 =m1g => m1 = 1(kg)
P2 = m2g => m2 =1,5(kg)
Trước khi nổ, hai mảnh của quả lựu đạn đều chuyển động với vận tốc v0, nên hệ vật có tổng động lượng : \(p_0=\left(m_1+m_2\right)v_0\)
Theo đl bảo toàn động lượng : \(p=p_0\Leftrightarrow m_1v_1+m_2v_2=\left(m_1+m_2\right)v_0\)
=> \(v_1=\frac{\left(m_1+m_2\right)v_0-m_2v_2}{m_1}=\frac{\left(1+1,5\right).10-1,5.25}{1}=-12,5\left(m/s\right)\)
=> vận tốc v1 của mảnh nhỏ ngược hướng với vận tốc ban đầu v0 của quả lựu đạn.
Bài2;
Vận tốc mảnh nhỏ trước khi nổ là :
v02=\(v_1^2=2gh\)
=> v1 = \(\sqrt{v_0^2-2gh}=\sqrt{100^2-2.10.125}=50\sqrt{3}\left(m/s\right)\)
Theo định luật bảo toàn động lượng :
\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)
p = mv = 5.50 =250(kg.m/s)
\(\left\{{}\begin{matrix}p_1=m_1v_1=2.50\sqrt{3}=100\sqrt{3}\left(kg.m/s\right)\\p_2=m_2v_2=3.v_2\left(kg.m/s\right)\end{matrix}\right.\)
+ Vì \(\overrightarrow{v_1}\perp\overrightarrow{v_2}\rightarrow\overrightarrow{p_1}\perp\overrightarrow{p_2}\)
=> p2 = \(\sqrt{p_1^2+p^2}=\sqrt{\left(100\sqrt{3}\right)^2+250^2}=50\sqrt{37}\left(kg.m/s\right)\)
=> v2= \(\frac{p_2}{m_2}=\frac{50\sqrt{37}}{3}\approx101,4m/s+sin\alpha=\frac{p_1}{p_2}=\frac{100\sqrt{3}}{50\sqrt{3}}\)
=> \(\alpha=34,72^o\)
Vì chỉ có 2 vật tương tác vs nhau nên động năng đc bảo toàn
Chọn chiều dương là chiều chuyển động của vật A trước khi va chạm
Động năng của hệ trước khi va chạm là:
\(W_{đ1}=\frac{1}{2}m_A.v_{A1}^2=\frac{1}{2}.m_A.1^2=\frac{1}{2}m_A\left(J\right)\)
Động năng của hệ sau va chạm
\(W_{đ2}=-\frac{1}{2}m_A.v_A^2+\frac{1}{2}m_B.v_B^2\left(J\right)\)
ĐLBTĐN:
\(\frac{1}{2}m_A=-\frac{1}{2}m_A.v_A^2+\frac{1}{2}m_B.v_B^2\)
\(\Leftrightarrow\frac{1}{2}m_A=-\frac{1}{2}.m_A.0,1^2+\frac{1}{2}.0,2.0,55^2\)
\(\Leftrightarrow1,01m_A=0,0605\Leftrightarrow m_A=0,06\left(kg\right)=600\left(g\right)\)
Ta có:
∆E = -4,176.10-13 J = - = -2,61 MeV.
=> KP = Kn = = 0,45 MeV
Mặt khác ta có:
K = nên v = và 931 MeV/u = 1c2
Vậy: vP = = 1,7.106 m/s.
m n = 1,0087u
ban đầu có 1 hạt n, sau sinh ra 2 hạt n
=> m hao hụt = m U + m n - m Mo- m La - 2 . m n = 0,23u
=> năng lượng tỏa = 0,23 . 931 = 214 M ev
Khi đến độ cao cực đại : v =0 => p=0
Bảo toàn động lượng trước và sau va chạm
\(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{0}\)
=> \(p_1=p_2\)
\(\Leftrightarrow\frac{m}{3}.20=\frac{2m}{3}.v_2\); \(m=\frac{m}{3}+\frac{2m}{3}\)
=> v2 = 10m/s
Ta có : \(v_2-v_2^2=2gh\)
=> \(0-10^2=2.10.h\)
=> h= 5m
chọn hệ trục xOy như hình vẽ ta có
các lực tác dụng lên vật là: \(\overrightarrow{Fms},\overrightarrow{F},\overrightarrow{P},\overrightarrow{N}\)
theo định luật 2 Newton ta có
\(\overrightarrow{F}+\overrightarrow{Fms}+\overrightarrow{P}+\overrightarrow{N}=\overrightarrow{a}.m\left(1\right)\)
chiếu phương trình 1 lên trục Oy ta có
-P + N=0
\(\Leftrightarrow\)P=N\(\Rightarrow\)Fms=\(\mu.N=\mu.mg\)
chiếu pt 1 lên trục Ox ta có
F-Fms=am
\(\Rightarrow\)F=am-Fms=a.m-\(\mu mg\)=1,25.10-0,3.4.10=0,5(N)
Vậy ..........
O x y P N Fms F
Đáp án A
Xét tại vị trí va chạm thế năng không đổi nên sự biến thiên cơ năng chính là sự biến thiên động năng nó chuyển thành nhiệt tỏa ra khi va chạm
- Áp dụng định luật bảo toàn động lượng của hệ.
- Ta có công thức giải nhanh trong quá trình va chạm mềm cơ năng của hệ bị giảm. Phần cơ năng giảm này đã chuyển hóa thành nhiệt năng. Nói cách khác ta có công thức nhiệt tỏa ra trong va chạm: