Bài1:

b) B= (a-b-c)^2.            ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài1:

b) B= (a-b-c)^2.                         ĐS: B= a^2  +b^2 +c^2 - 2ab - 2ac + 2bc

 

Bài2:

a) ( x- 1/3)^2.                     b) (x + y^2 phần3)^3

 

Bài 3 

a) (2x +1) ( 4x^2 - 2x + 1).            b) (1- x phần 2) ( 1+ x phần 2 + x^2 phần4)

c) (y - x phần y ) (y^2 + x + x^2 phần y^2)

 

Bài4:

a) M= ( x + 3) ( x^2 - 3x + 9).             b) N= (1- 3x) (1+ 3x + 9^2)

c) P= ( x - 1 phần 2) ( x^2 + x phần 2 + 1 phần 4).           

đ) Q= (2x + 3y) ( 4x^2 - 6xy + 9y^2)

 

Bài5: vieets các biểu thức dưới dạng hướng của một tổng hoặc hiệu

a) x^2 + 6x +9.     b) 9x^2 - 6x +1.    c) x^2y^2 + xy + 1 phần 4.    đ) (x - y)^2 +6(x - y)+9

 

Bài6: điền vào chỗ trống"..." đẻ hoà thành các hằng đẳng thức sau

a) x^2 + 6x + .... = ( x + ....)^2.        b) 4x^2 - 4x + ....= ( 2x - .... )^2

c) 9x^2 - .... + .... = ( 3x - 2y)^2.      đ) ( x- ....) (.... + y phần3) = .... - y^2 phần 9

 

Bài 7 :viết các biểu thức dưới dạng hướng của một tổng hoặc hiệu

a) -x^3 + 3x^2 - 3x +1.          b) x^3 + x^2 + 1 phần 3x + 1 phần 27

c) x^6 - 3^4y + 3^2y^2 - y^3.      d) ( x-y)^3 + (x-y)^2 + 1 phần3 (x-y) + 1 phần27

 

Bài8: viết các biểu thức dưới dạng tích

a) x^3 + 27.      b) x^3 - 1 phần 8.    c) 8x^3 + y^3.    đ) 8^3 - 27y^3

 

Bài9:

a) A= -x^3 + 6x^2 - 12x + 8 tại x = -28.      b) B= 8x^3 + 12x^2 + 6x +1 tại x= 1 phần2

c) C= ( x + 2y)^3 - 6( x+ 2y)^2 + 12(x +2y) - 8 tại x = 20, y= 1

 

Bài10

a) tính 11^3 - 1 ;      b) tính giá trị biểu thức x^3 - y^3 biết x-y=6 và x.y= 9

 

Bài11

a) M= ( x+3) (x^2 - 3x + 9) - ( 3 - 2x) ( 4x^2 + 6x +9) tại x=20

b) N= ( x-2y) ( x^2 +2xy + 4y^2) + 16y^3 biết x +2y =0

 

Bài12 tính nhanh:

a) 101^2;     b) 75^2 - 50. 75 + 25^2;    c) 103 .97. 

 

Bài13:

a) 101^3;     b) 98^3 + 6 . 98^2 + 12 . 98 +8.   c) 99^3.   đ) 13^3 - 9. 13^2 + 27. 13 - 27

 

Bài14: tính giá trị biểu thức P= 9x^2 - 12x + 4 trong mỗi trường hợp sau

a) x=34;      b) x= 2 phần3.     c) x=-8 phần 3    

 

Bài15 chứng minh các hằng đẳng thức sau

a) ( a-b)^2 = (a+b)^2 - 4ab;       b) (x+y)^2 + (x-y)^2 =2(x^2 + y^2)

2

15:

a: (a-b)^2

=a^2-2ab+b^2

=a^2+2ab+b^2-4ab

=(a+b)^2-4ab

b: (x+y)^2+(x-y)^2

=x^2+2xy+y^2+x^2-2xy+y^2

=2x^2+2y^2

=2(x^2+y^2)

14:

P=9x^2-12x+4

=(3x)^2-2*3x*2+2^2

=(3x-2)^2

a: Khi x=14 thì P=(3*14-2)^2=40^2=1600

b: Khi x=2/3 thì P=(3*2/3-2)^2=0

c: Khi x=-8/3 thì P=(-8/3*3-2)^2=(-10)^2=100

12:

a: 101^2=(100+1)^2

=100^2+2*100+1

=10000+200+1

=10201

b: 75^2-50*75+25^2

=(75-25)^2=50^2=2500

c: 103*97

=(100+3)(100-3)

=100^2-9

=9991

6 tháng 8 2023

Bài 1: b) B = (a - b - c)^2 = a^2 + b^2 + c^2 - 2ab - 2ac + 2bc Bài 2: a) (x - 1/3)^2 = x^2 - 2/3x + 1/9 b) (x + y^2/3)^3 = x^3 + 3x^2y^2/3 + 3xy^4/9 + y^6/27 Bài 3: a) (2x + 1)(4x^2 - 2x + 1) = 8x^3 + 4x^2 - 2x + 4x^2 - 2x + 1 = 8x^3 + 8x^2 - 4x + 1 b) (1 - x^2)(1 + x^2 + x^4) = 1 - x^4 + x^2 + x^2 - x^4 + x^6 = x^6 - 2x^4 + 2x^2 + 1 c) (y - x/y)(y^2 + x + x^2/y^2) = y^3 + xy - x^2 + y^2 + xy + x^2 + x/y^2 - x - x^2/y^2 = y^3 + 2xy + y^2 - x Bài 4: a) M = (x + 3)(x^2 - 3x + 9) = x^3 - 3x^2 + 9x + 3x^2 - 9x + 27 = x^3 + 27 b) N = (1 - 3x)(1 + 3x + 9^2) = 1 - 9x + 3x - 27x^2 + 9 + 27x + 81 = -27x^2 + 27 c) P = (x - 1/2)(x^2 + x/2 + 1/4) = x^3 + x^2/2 + x^2/4 - x/2 - x/4 + 1/8 = x^3 + 3x^2/4 - 3x/4 + 1/8 d) Q = (2x + 3y)(4x^2 - 6xy + 9y^2) = 8x^3 - 12x^2y + 18xy^2 + 12x^2y - 18xy^2 + 27y^3 = 8x^3 + 27y^3 Bài 5: a) x^2 + 6x + 9 = (x + 3)^2 b) 9x^2 - 6x + 1 = (3x - 1)^2 c) x^2y^2 + xy + 1/4 = (xy + 1/2)^2 d) (x - y)^2 + 6(x - y) + 9 = (x - y + 3)^2

Bài 6: a) x^2 + 6x + 9 = (x + 3)^2 b) 4x^2 - 4x + 1 = (2x - 1)^2 c) 9x^2 - 12xy + 4y^2 = (3x - 2y)^2 d) (x - y)(x + y/3) = x^2 - y^2/9 Bài 7: a) -x^3 + 3x^2 - 3x + 1 = -(x - 1)^3 b) x^3 + x^2 + 1/3x + 1/27 = (x + 1/3)^3 c) x^6 - 3^4y + 3^2y^2 - y^3 = (x^2 - 3y)^3 d) (x - y)^3 + (x - y)^2 + 1/3(x - y) + 1/27 = (x - y + 1/3)^3 Bài 8: a) x^3 + 27 = (x + 3)(x^2 - 3x + 9) b) x^3 - 1/8 = (x - 1/2)(x^2 + 1/2x + 1/4) c) 8x^3 + y^3 = (2x)^3 + y^3 = (2x + y)(4x^2 - 2xy + y^2) d) 8^3 - 27y^3 = 512 - 27y^3 = (8 - 3y)(64 + 24y + 9y^2) Bài 9: a) A = -(-28)^3 + 6(-28)^2 - 12(-28) + 8 = -21952 b) B = 8(1/2)^3 + 12(1/2)^2 + 6(1/2) + 1 = 2 c) C = (20 + 2(1))^3 - 6(20 + 2(1))^2 + 12(20 + 2(1)) - 8 = 0 Bài 10: a) 11^3 - 1 = 1330 b) x^3 - y^3 = (x - y)(x^2 + xy + y^2) = 6(6^2 + 9) = 450Bài 11: a) M = (x + 3)(x^2 - 3x + 9) - (3 - 2x)(4x^2 + 6x + 9) = x^3 - 3x^2 + 9x + 3x^2 - 9x + 27 - (12x^2 + 18x + 27 - 8x^2 - 12x - 18) = x^3 - 12x^2 + 9x + 27 - 4x^2 - 12x + 9 = x^3 - 16x^2 - 3x + 36 b) N = (x - 2y)(x^2 + 2xy + 4y^2) + 16y^3 = (x - 2y)(x^2 + 2xy + 4y^2) + 16y^3 = x^3 - 2x^2y + 2xy^2 - 4y^3 + 16y^3 = x^3 - 2x^2y + 2xy^2 + 12y^3 Bài 12: a) 101^2 = 10201 b) 75^2 - 50.75 + 25^2 = 5625 - 3750 + 625 = 2500 c) 103.97 = 10091 Bài 13: a) 101^3 = 1030301 b) 98^3 + 6.98^2 + 12.98 + 8 = 941192 c) 99^3 = 970299 Bài 14: a) P = 9(34)^2 - 12(34) + 4 = 8296 b) P = 9(2/3)^2 - 12(2/3) + 4 = 0 c) P = 9(-8/3)^2 - 12(-8/3) + 4 = 128 Bài 15: a) (a - b)^2 = (a + b)^2 - 4ab = a^2 - 2ab + b^2 = a^2 + 2ab + b^2 - 4ab = (a + b)^2 - 4ab b) (x + y)^2 + (x - y)^2 = 2(x^2 + y^2) = x^2 + 2xy + y^2 + x^2 - 2xy + y^2 = 2x^2 + 2y^2 
6 tháng 10 2017

Bạn nhân 2 cả 3 câu rồi phân tích ra hằng đẳng thức là được

14 tháng 3 2016

bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1

bài 2: =(x-3)2+1

vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3

10 tháng 7 2017

Theo đề bài ta có :

\(\frac{x\left(3-x\right)}{x+1}\cdot\left(x+\frac{\left(3-x\right)}{x+1}\right)=2\)

=> \(\frac{\left(3x-x^2\right)}{x+1}\cdot\frac{\left(3-x+x^2+x\right)}{x+1}=2\)

=> \(\left(3x-x^2\right)\left(x^2+3\right)=2\left(x+1\right)^2\)

=> \(3x^3+9x-x^4-3x^2=2x^2+4x+2\)

=> \(3x^3+\left(9x-4x\right)+\left(-3x^2-2x^2\right)-x^4-2=0\)

=> \(3x^3+5x-5x^2-x^4-2=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x^3-1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)-2\left(1-x\right)\left(x^2+x+1\right)=0\)

=> \(\left(1-x\right)\left(5x+x^3-2x^2-2x-2\right)=0\)

=> \(\left(1-x\right)\left(3x+x^3-2x^2-2\right)=0\)

=> \(\left(1-x\right)\left(x^3-x^2-x^2+x+2x-2\right)=0\)

=> \(\left(1-x\right)\left(x^2\left(x-1\right)-x\left(x-1\right)+2\left(x-1\right)\right)=0\)

=> \(\left(1-x\right)\left(x-1\right)\left(x^2-x+2\right)=0\)

Ta Thấy :

\(\left(x^2-x+2\right)=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=> \(\hept{\begin{cases}1-x=0\\x-1=0\end{cases}}\)

=> x = 1

21 tháng 6 2016

Cô hướng dẫn nhé.

1. Nhẩm nghiệm để suy ra nhân tử .

\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

Xem lại đề câu b, nếu ko ta dùng công thức Cardano.

2.

a. Đặt ẩn phụ.

b. \(B=\left(x+y\right)^2-\left(x+y\right)-12\). Sau đó lại đặt ẩn phụ.

c. Đặt \(x^2+x+1=t\)

d. Ghép: \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+24\)

Đặt \(x^2+7x+10=t\)

21 tháng 6 2016

2a. Đặt \(x^2+x=t\Rightarrow A=t^2-2t-15=t^2-5t+3t-15=\left(t-5\right)\left(t+3\right)\)

Quay lại biến x , ta có  \(\left(x^2+x-5\right)\left(x^2+x+3\right)\)

4 tháng 8 2018

\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(3-x\right)^2\)

\(=\left[\left(2x+1\right)-\left(3-x\right)\right]^2\)

\(=\left(3x-2\right)^2\)

p/s: chúc bạn học tốt