Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lưu ý: \(tana=cot\left(90-a\right)\)
\(S=tan1.tan89.tan2.tan88...tan44.tan46.tan45\)
\(=tan1.cot1.tan2.cot2...tan44.cot44.tan45\)
\(=1.1.1...1.1=1\)
\(tan1^0.tan89^0.tan2^0.tan88^0...tan44^0tan46^0.tan45^0\)
\(=tan1^0.cot1^0.tan2^0.cot2^0...tan44^0.cot44^0.tan45^0\)
\(=1.1.1...1=1\)
b/ Nhân cả tử và mẫu với liên hợp của mẫu và rút gọn ta được:
\(P=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+....-\sqrt{2n}-\sqrt{2n+1}\)
\(=-\sqrt{2}-\sqrt{2n+1}\)
a)Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:
\(\sin1=\cos89....\sin89=\cos1\)
Vậy \(A=0\)
b) Theo định lí tỉ số lượng giác của 2 góc phụ nhau, ta có:
\(\tan1=\cot89...\tan2=\cot88...\)
\(\Rightarrow B=\tan45\cdot\tan46\cdot\cot46\cdot...\cdot\tan89\cdot\cot89\)
Mà \(\tan\lambda\cdot\cot\lambda=1\)
\(\Rightarrow B=\tan45\cdot1=1\)
c) Bạn làm tương tự dựa vào CT \(\sin^2\lambda+\cos^2\lambda=1\)
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(BC=AB:\sin\widehat{C}\)
\(=6:\dfrac{1}{2}=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
hay \(AC=6\sqrt{3}\left(cm\right)\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(HB\cdot HC=AH^2\left(1\right)\)
Xét tứ giác AEHF có
\(\widehat{EAF}=\widehat{AFH}=\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF
hay \(AH\cdot EF=AH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(HB\cdot HC=AH\cdot EF\)
Ta có: `sin^2 \alpha +cos^2 \alpha=1`
`<=>9/25+cos^2 \alpha=1`
`<=>cos^2 \alpha =16/25`
`=>cos \alpha =[+-4]/5`
Lại có: `1+tan^2 \alpha =1/[cos^2 \alpha]`
`<=>1+tan^2 \alpha=1/[16/25]=>tan^2 \alpha=9/16`
`@` Với `cos \alpha =4/5=>A=[2.(3/5)^2+3]/[2. 4/5-9/16]=1488/415`
`@` Với `cos \alpha =-4/5=>A=[2.(3/5)^2+3]/[2. [-4]/5-9/16]=-1488/865`