K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

A B C H D E

a, Xét tam giác AHB và tam giác CHA ta có : 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác AHB ~ tam giác CHA ( g.g )

4 tháng 6 2021

b, Xét tam giác AEB và tam giác DAB ta có 

^AEB = ^DAB = 900

^B _ chung 

Vậy tam giác AEB ~ tam giác DAB ( g.g )

9 tháng 9 2019

A B C E D M H G

b) Chứng minh tam giác BEC đồng dạng tam giác ADC

Xét \(\Delta CAB\)và \(\Delta CDE\) có:

^CAB = ^CDE (=1v)

^C chung 

=>  \(\Delta CAB\)~\(\Delta CDE\)

=> \(\frac{CB}{CE}=\frac{CA}{CD}\) (1) 

Xét \(\Delta CAD\)và \(\Delta CBE\)có:

\(\frac{CB}{CE}=\frac{CA}{CD}\)( từ (1))

và \(\widehat{C}\)chung

=>  \(\Delta CAD\)\(\Delta CBE\)

c) Chứng tam giác ABE vuông cân.

+) Ta có: AB \(\perp\)AC (\(\Delta\)ABC vuông )

mà E \(\in\)AC

=> AB \(\perp\)AE => \(\Delta\)ABE vuông  

+) Theo (a) =>   ^DAC = ^EBC  

Gọi N là giao điểm của AD và BE 

Xét \(\Delta\)DNB và  \(\Delta\)ENA có:

^ENA = ^DNB ( đối đỉnh)

^NBD = ^NAE (    vì ^DAC = ^EBC )  

=>  \(\Delta\)DNB ~  \(\Delta\)ENA  

=> ^NDB = ^NEA  

Xét  \(\Delta\)ABE và  \(\Delta\)HAD có:

^AEB = ^HDA ( vì ^NDB = ^NEA  )  (1)

^^BAE = ^AHD ( =1v)

=>   \(\Delta\)ABE ~  \(\Delta\)HAD

=> ^HAD = ^ ABE  (20

mà \(\Delta\)AHD có: AH=HD => \(\Delta\)AHD cân => ^HAD =^ HDA (3)

Từ (1) ; (2) ; (3) => ^ABE =^BEA =>\(\Delta\)ABE cân 

Vậy \(\Delta\) ABE vuông cân tại A

d) Ta có: M là trung điểm BE => AM là đường trung tuyến \(\Delta\)ABE mà \(\Delta\)ABE vuông cân tại A

=> AM là đường phân giác ^A của \(\Delta\)ABE

=> AG là đường phân giác ^A của \(\Delta\)ABC

Theo tính chất đường phân giác ta có: \(\frac{GB}{GC}=\frac{AB}{AC}\)

Mà \(\Delta\)ABH  ~\(\Delta\)CAH ( dễ tự chứng minh)

=> \(\frac{AB}{CA}=\frac{AH}{CH}\)

=> \(\frac{GB}{GC}=\frac{AH}{CH}\Rightarrow\frac{GB}{AH}=\frac{GC}{CH}=\frac{GB+GC}{AH+CH}=\frac{BC}{AH+CH}\)( tính chất dãy tỉ số bằng nhau)

=> \(\frac{GC}{BC}=\frac{AH}{AH+CH}=\frac{DH}{AH+CH}\)( vì AH=DH)

15 tháng 4 2018

(tớ mới giải được câu a)

Xét tam giác AHB và CHA => AH/CH = HB/AH mà AH=HD => tỉ số đồng dạng

15 tháng 5 2016

a, xét tam giác ABC và tam giác DAB có:

góc BAC = góc ADB=90 độ

góc ABC = góc BAD( so le trong của Ax//BC)

do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)

b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)

theo cm câu a : tam giác ABC đồng dạng với tam giác DAB

=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)

\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)

\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)

c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)

 

17 tháng 5 2016

sao admin ko duyệt ạ

 

20 tháng 4 2017

a) tính BC:

Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC

ta có: BC2=BA2+AC2

       =>BC2= 62+82

     => BC2= 36+64

     =>BC2= 100

     => BC= \(\sqrt{100}\)

    => BC= 10 (cm)

b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:

Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)

         - tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)

     => \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))

21 tháng 4 2017

có bạn nào giúp minh câu c và d được k. mình k cho

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du