Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H D E
a, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
b, Xét tam giác AEB và tam giác DAB ta có
^AEB = ^DAB = 900
^B _ chung
Vậy tam giác AEB ~ tam giác DAB ( g.g )

A B C E D M H G
b) Chứng minh tam giác BEC đồng dạng tam giác ADC
Xét \(\Delta CAB\)và \(\Delta CDE\) có:
^CAB = ^CDE (=1v)
^C chung
=> \(\Delta CAB\)~\(\Delta CDE\)
=> \(\frac{CB}{CE}=\frac{CA}{CD}\) (1)
Xét \(\Delta CAD\)và \(\Delta CBE\)có:
\(\frac{CB}{CE}=\frac{CA}{CD}\)( từ (1))
và \(\widehat{C}\)chung
=> \(\Delta CAD\)~ \(\Delta CBE\)
c) Chứng tam giác ABE vuông cân.
+) Ta có: AB \(\perp\)AC (\(\Delta\)ABC vuông )
mà E \(\in\)AC
=> AB \(\perp\)AE => \(\Delta\)ABE vuông
+) Theo (a) => ^DAC = ^EBC
Gọi N là giao điểm của AD và BE
Xét \(\Delta\)DNB và \(\Delta\)ENA có:
^ENA = ^DNB ( đối đỉnh)
^NBD = ^NAE ( vì ^DAC = ^EBC )
=> \(\Delta\)DNB ~ \(\Delta\)ENA
=> ^NDB = ^NEA
Xét \(\Delta\)ABE và \(\Delta\)HAD có:
^AEB = ^HDA ( vì ^NDB = ^NEA ) (1)
^^BAE = ^AHD ( =1v)
=> \(\Delta\)ABE ~ \(\Delta\)HAD
=> ^HAD = ^ ABE (20
mà \(\Delta\)AHD có: AH=HD => \(\Delta\)AHD cân => ^HAD =^ HDA (3)
Từ (1) ; (2) ; (3) => ^ABE =^BEA =>\(\Delta\)ABE cân
Vậy \(\Delta\) ABE vuông cân tại A
d) Ta có: M là trung điểm BE => AM là đường trung tuyến \(\Delta\)ABE mà \(\Delta\)ABE vuông cân tại A
=> AM là đường phân giác ^A của \(\Delta\)ABE
=> AG là đường phân giác ^A của \(\Delta\)ABC
Theo tính chất đường phân giác ta có: \(\frac{GB}{GC}=\frac{AB}{AC}\)
Mà \(\Delta\)ABH ~\(\Delta\)CAH ( dễ tự chứng minh)
=> \(\frac{AB}{CA}=\frac{AH}{CH}\)
=> \(\frac{GB}{GC}=\frac{AH}{CH}\Rightarrow\frac{GB}{AH}=\frac{GC}{CH}=\frac{GB+GC}{AH+CH}=\frac{BC}{AH+CH}\)( tính chất dãy tỉ số bằng nhau)
=> \(\frac{GC}{BC}=\frac{AH}{AH+CH}=\frac{DH}{AH+CH}\)( vì AH=DH)
(tớ mới giải được câu a)
Xét tam giác AHB và CHA => AH/CH = HB/AH mà AH=HD => tỉ số đồng dạng

a, xét tam giác ABC và tam giác DAB có:
góc BAC = góc ADB=90 độ
góc ABC = góc BAD( so le trong của Ax//BC)
do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)
b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)
theo cm câu a : tam giác ABC đồng dạng với tam giác DAB
=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)
\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)
\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)
c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)

a) tính BC:
Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC
ta có: BC2=BA2+AC2
=>BC2= 62+82
=> BC2= 36+64
=>BC2= 100
=> BC= \(\sqrt{100}\)
=> BC= 10 (cm)
b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:
Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)
- tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)
=> \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))
có bạn nào giúp minh câu c và d được k. mình k cho