K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án A

3 tháng 2 2017

TOÁN LỚP 6 NHA MÌNH GHI NHẦM

8 tháng 2 2017

1.-12(x-5)+7(3-x)=5.

#-12x+60+21-7x=5

#-12x-7x=5-60-21

#-19x=-76

#x=-76:(-19)

#x=4(TMĐK:x€Z)

Vậy x=4

#là dấu suy ra nhé! Máy mình không có dấu suy ra!

1 tháng 8 2019

1-5sinx+2cos2x=0

\(\Leftrightarrow\)1-5sinx+2(1-sin2x)=0

\(\Leftrightarrow\)-2sin2x-5sinx+3=0

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-3\left(loại\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\frac{\pi}{6}+k2\pi\\\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

26 tháng 7 2019
https://i.imgur.com/U77ZRHI.jpg
Bài 1: 1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0 2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr: 1,góc BAQ=góc CAP 2,Điểm Q di chyển trên 1...
Đọc tiếp

Bài 1:

1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0

2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn

Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr:

1,góc BAQ=góc CAP

2,Điểm Q di chyển trên 1 đường thẳng cố định

Bai 3:Tìm tất cả các căp số thực(a:b) có tính chất:Trong (0xy),parabol y=x2-2bx +(a+1) cắt 0x tại 2 điểm phân biệt A,B cắt 0y tại C(C#0) sao cho I(a,b) là tâm đường tròn ngoại tiếp tam giác ABC

Bài 4:

1,cho x,y>0 tm:log3(1-xy)/(x+2y) = 3xy +x +2y -4.tìn gtnn của Q=x+y

2,cho h/s f(x)=ln2019 – ln( (x+1)/x).tính S=f’(1) +f’(2) +f’(3) +…+f’(2019)

Bai 5:cho(xn): x1=2/3

Xn+1=xn/(2(2n+1)xn +1), mọi n>=1

1,đặt Vn=1/xn. cmr Vn+1=Vn+2(2n+1),mọi n>=1.tìm Vn

2,đặt Yn=x1+x2+x3+….+xn.Tính Lim yn

Bài 6: cho tam giác ABC vuông cân tại B.M là trung điểm AB.gọi I là điểm di chuyển trên đường thẳng MC sao cho|2 vecto IM+ vecto IC- vecto IA| đạt gtnn.Tính tỉ số AC/AI

0
NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)

\(b=\frac{1-5+1}{0}=\frac{-3}{0}=-\infty\)

\(c=\lim\limits_{x\rightarrow1}\frac{x\left(1+2x\right)\left(1+3x\right)+2x\left(1+3x\right)+3x}{x}=\lim\limits_{x\rightarrow1}\left[\left(1+2x\right)\left(1+3x\right)+2\left(1+3x\right)+3\right]=1+2+3=6\)

\(d=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-1}{5x^4+2x}=\frac{4}{0}=+\infty\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)

\(b=\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)

\(c=\lim\limits_{x\rightarrow0}\frac{x+x^2+...+x^n-n}{x-1}=\frac{-n}{-1}=n\)

\(\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)=x\left(1+2x\right)...\left(1+nx\right)+\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)\)

\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+\left(1+3x\right)...\left(1+nx\right)\)

\(=...\)

\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx+1\)

\(\Rightarrow\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\frac{x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx}{x}\)

\(=\lim\limits_{x\rightarrow0}\left[\left(1+2x\right)...\left(1+nx\right)+2\left(1+3x\right)...\left(1+nx\right)+...+n\right]\)

\(=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)