Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác HAC ta có: GH = 2GA, HK = 2KC suy ra GK // AC hay GK // (ABCD).
b) (MNEF) // (ABCD) do đó MN // AB, NE // BC, EF // CD, MF // AD
Lại có AB // CD, AD // BC suy ra MN // EF, MF // NE.
Suy ra, tứ giác MNEF là hình bình hành.
a/
Ta có
\(S\in\left(SAD\right);S\in\left(SBC\right)\Rightarrow S\in d\) và d//AD//BC (Nếu 2 mp lần lượt chứa 2 đường thẳng // với nhau thì giao tuyến của chúng nếu có là đường thẳng // với 2 đường thẳng đã cho)
b/
Xét tg SAD có
MA=MD; HA=HS => MH là đường trung bình của tg SAD
=> MH//SD mà \(SD\in\left(SCD\right)\) => MH//(SCD) (1)
Xét tg SAB có
HA=HS; KS=KB => MH là đường trung bình của tg SAB
=> HK//AB mà AB//CD => HK//CD mà \(CD\in\left(SCD\right)\) => HK//(SCD) (2)
Từ (1) và (2) => (MHK)//(SCD) nên không có giao tuyến
c/
Gọi O là trung điểm BD, Nối MO cắt BC tại N
Xét tg ABD có
MA=MD; OB=OD => MO là đường trung bình của tg ABD
=> MO//AB; mà HK//AB (cmt) => MO//HK
=> M; O; H; K cùng thuộc mặt phẳng MKH
\(\Rightarrow MO\in\left(MKH\right)\Rightarrow MN\in\left(MKH\right)\Rightarrow N\in\left(MKH\right)\)
Mà \(N\in BC\)
=> N là giao của BC với (MKH)
Ta có MO//HK => MN//HK => MHNK là hình thang
a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).
Ta có:
⇒ (SAD) ∩ (SBC) = Sx
Và Sx // AD // BC.
b) Ta có: MN // IA // CD
Mà
(G là trọng tâm của ∆SAB) nên
⇒ GN // SC
SC ⊂ (SCD) ⇒ GN // (SCD)
c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)
MN // CD ⇒
Ta có:
a) Gọi N là giao điểm của EM và CD
Vì M là trung điểm của AB nên N là trung điểm của CD (do ABCD là hình thang)
⇒ EN đi qua G
⇒ S, E, M, G ∈ (α) = (SEM)
Gọi O là giao điểm của AC và BD
Ta có (α) ∩ (SAC) = SO
và (α) ∩ (SBD) = SO = d
b) Ta có: (SAD) ∩ (SBC) = SE
c) Gọi O' = AC' ∩ BD'
Ta có AC' ⊂ (SAC), BD' ⊂ (SBD)
⇒ O' ∈ SO = d = (SAC) ∩ (SBD)
a: Xét ΔSAC có
H,K lần lượt là trung điểm của SA,SC
=>HK là đường trung bình
=>HK//AC
Xét (GHK) và (ABCD) có
HK//AC
\(G\in\left(GHK\right)\cap\left(ABCD\right)\)
Do đó: (GHK) giao (ABCD)=xy, xy đi qua G và xy//HK//AC
b: Chọn mp(SBD) có chứa SD
Gọi O là giao điểm của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔABC có
G là trọng tâm
BO là trung tuyến của ΔABC
Do đó: B,O,G thẳng hàng
=>G\(\in\)BD
Trong mp(SAC), gọi I là giao điểm của SO với HK
\(I\in SO\subset\left(SBD\right);I\in HK\subset\left(GHK\right)\)
=>\(I\in\left(SBD\right)\cap\left(GHK\right)\)(1)
\(G\in BD\subset\left(SBD\right);G\in\left(GHK\right)\)
=>\(G\in\left(SBD\right)\cap\left(GHK\right)\left(2\right)\)
Từ (1) và (2) suy ra \(\left(SBD\right)\cap\left(GHK\right)=GI\)
Gọi M là giao điểm của SD với GI
=>M là giao điểm của SD với (SHK)
c: Xét ΔSAC có
O,K lần lượt là trung điểm của CA,CS
=>OK là đường trung bình của ΔSAC
=>OK//SA và OK=SA/2
OK=SA/2
SH=SA/2
Do đó: OK=SH
Xét tứ giác SHOK có
SH//OK
SH=OK
Do đó: SHOK là hình bình hành
=>HK cắt SO tại trung điểm của mỗi đường
mà E là trung điểm của HK
nên Elà trung điểm của SO
=>E trùng với I
=>(SBD) giao (GHK)=GE
=>G,E,M thẳng hàng
Trong mp(SAD) qua G dựng đường thẳng d//AD
HA=HB; KC=KD => HK là đường trung bình của hình thang ABCD
=> HK//AD và \(HK=\dfrac{AB+CD}{2}\)
Ta có d//AD
=> d//HK (cùng // với AD)
\(\Rightarrow d\in\left(GHK\right)\) mà \(d\in\left(SAD\right)\) => d là giao tuyến của (SAD) với (GHK)
Xét tg SAE có MN//AD \(\Rightarrow\dfrac{SM}{SA}=\dfrac{MG}{AE}=\dfrac{SG}{SE}=\dfrac{2}{3}\)
Xét tg SAD có MN//AD \(\Rightarrow\dfrac{MN}{AD}=\dfrac{SM}{SA}=\dfrac{2}{3}\Rightarrow MN=\dfrac{2}{3}AD\)
Do MNHK là hbh => MN=HK
\(\Rightarrow\dfrac{2}{3}AD=\dfrac{AD+BC}{2}\Leftrightarrow4AD=3AD+3BC\)
\(\Leftrightarrow AD=3BC=k.BC\Rightarrow k=3\)