Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S A B C D M H K N O
a/
Ta có
\(S\in\left(SAD\right);S\in\left(SBC\right)\Rightarrow S\in d\) và d//AD//BC (Nếu 2 mp lần lượt chứa 2 đường thẳng // với nhau thì giao tuyến của chúng nếu có là đường thẳng // với 2 đường thẳng đã cho)
b/
Xét tg SAD có
MA=MD; HA=HS => MH là đường trung bình của tg SAD
=> MH//SD mà \(SD\in\left(SCD\right)\) => MH//(SCD) (1)
Xét tg SAB có
HA=HS; KS=KB => MH là đường trung bình của tg SAB
=> HK//AB mà AB//CD => HK//CD mà \(CD\in\left(SCD\right)\) => HK//(SCD) (2)
Từ (1) và (2) => (MHK)//(SCD) nên không có giao tuyến
c/
Gọi O là trung điểm BD, Nối MO cắt BC tại N
Xét tg ABD có
MA=MD; OB=OD => MO là đường trung bình của tg ABD
=> MO//AB; mà HK//AB (cmt) => MO//HK
=> M; O; H; K cùng thuộc mặt phẳng MKH
\(\Rightarrow MO\in\left(MKH\right)\Rightarrow MN\in\left(MKH\right)\Rightarrow N\in\left(MKH\right)\)
Mà \(N\in BC\)
=> N là giao của BC với (MKH)
Ta có MO//HK => MN//HK => MHNK là hình thang
Qua S kẻ đường thẳng d song song AD (và BC)
Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC
\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)
a: Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
b: Xét ΔSAB có
M,N lần lượt là trung điểm của AS,AB
=>MN là đường trung bình của ΔSAB
=>MN//SB
Ta có: MN//SB
SB\(\subset\)(SBC)
MN ko nằm trong mp(SBC)
Do đó: MN//(SBC)