Bài toán 8: Phân tích các đa t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

\(a,2x^2-2xt-5x+5y\)

\(=\left(2x^2-5x\right)-\left(2xy-5y\right)\)

\(=x\left(2x-5\right)-y\left(2x-5\right)\)

\(=\left(2x-5\right)\left(x-y\right)\)

\(b,8x^2+4xy-2ax-ay\)

\(=\left(8x^2-2ax\right)+\left(4xy-ay\right)\)

\(=2x\left(4x-a\right)+y\left(4x-a\right)\)

\(=\left(4x-a\right)\left(2x+y\right)\)

\(c,x^3-4x^2+4x\)

\(=x^3-2x^2-2x^2+4x\)

\(=\left(x^3-2x^2\right)-\left(2x^2-4x\right)\)

\(=x^2\left(x-2\right)-2x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x-2\right)\)

\(=x\left(x-2\right)^2\)

\(d,2xy-x^2-y^2+16\)

\(=-\left(x^2-2xy+y^2-16\right)\)

\(=-\left[\left(x-y\right)^2-4^2\right]\)

\(=-\left(x-y-4\right)\left(x-y+4\right)\)

\(e,x^2-y^2-2yz-z^2\)

\(=x^2-\left(y^2+2yz+z^2\right)\)

\(=x^2-\left(y+z\right)^2=\left(x-y-z\right)\left(x+y+z\right)\)

4 tháng 9 2016

a) x3 + 2x2y + xy2– 9x = x(x2  +2xy + y2 – 9)

                                  = x[(x2 + 2xy + y2) – 9]

                                  = x[(x + y)2 – 32]

                                  = x(x + y – 3)(x + y + 3)

b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)

                                       = 2(x – y) – (x – y)2

                                       = (x – y)[2 – (x – y)]

                                       = (x – y)(2 – x + y)

c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).

4 tháng 9 2016

phông chữ lạ thường

22 tháng 12 2020

Bài 1:

a) \(x.\left(x^2-2xy+1\right)=x^3-2x^2y+x\)

b) \(\left(2x-3\right).\left(x+2\right)=2x^2+4x-3x-6=2x^2-x-6\)

Bài 2:

a) \(x^3-2x^2+x=x.\left(x^2-2x+1\right)=x.\left(x-1\right)^2\)

b) \(x^2-xy+2x-2y=\left(x^2-xy\right)+\left(2x-2y\right)=x.\left(x-y\right)+2.\left(x-y\right)=\left(x-y\right).\left(x+2\right)\)

c) Đề sai.

12 tháng 2 2018

a) (x2-y2)+(2x+2y)

= (x-y)(x+y)+2(x+y)

= (x+y)(x-y+2)

b) (3a2-6ab+3b2)-12c2

= 3(a2-2ab+b2)-12c2

= 3(a-b)2-3.(2c)2

= 3[(a-b)2-(2c)2]

= 3(a-b-2c)(a-b+2c)

c) (x2+2xy+y2)-25

= (x+y)2-25=(x+y-5)(x+y+5)

d) 81x2-(z2+6yz+9y2)=(9x)2-(z+3y)2=(9x-z-3y)(9x+z+3y)

12 tháng 2 2018

Bài dễ muốn chết mà giải không được. Chắc do đến Tết lười nè! Nói chơi thôi chứ ai mà không như vậy.

a) \(x^2-y^2+2x+2y=\left(x+y\right)\left(x-y\right)+2\left(x+y\right)=\left(x+y\right)\left(x-y+2\right)\).

b) \(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3\left[\left(a^2-2ab+b^2\right)-4c^2\right]\)

\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]=3\left(a-b+2c\right)\left(a-b-2c\right)\).

c) \(x^2-25+y^2+2xy=\left(x^2+2xy+y^2\right)-25=\left(x+y\right)^2-5^2\)

\(=\left(x+y+5\right)\left(x+y-5\right)\).

d) \(81x^2-6yz-9y^2-z^2=81x^2-\left(9y^2+6yz+z^2\right)\)

\(=81x^2-\left[\left(3y\right)^2+2.3y.z+z^2\right]=\left(9x\right)^2-\left(3y+z\right)^2=\left(9x+3y+z\right)\left(9x-3y-z\right)\).

Mình không biết bạn ở trình độ nào nên mình làm chi tiết như vậy. Khi giải, bạn có thể lược bỏ một số bước nếu bạn thấy không cần thiết.

30 tháng 10 2016

\(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

\(x^6-x^4-9x^3+9x^2\)

\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)

\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)

\(x^4-4x^3+8x^2-16x+16\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)\)

\(=\left(x^2+4\right)\left(x^2+4-4x\right)\)

\(=\left(x^2+4\right)\left(x-2\right)^2\)

\(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2-4c^2\right)\)

\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)

\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)

30 tháng 10 2016

cảm ơn bạn nha!eoeo

10 tháng 8 2021

Trả lời:

a) \(\frac{1}{4}x^2y+5x^3-x^2y^2=x^2\left(\frac{1}{4}y+5x-y^2\right)\)

 b) 5x ( x - 1 ) - 3y ( 1 - x ) = 5x ( x - 1 ) + 3y ( x - 1 ) = ( x - 1 )( 5x + 3y )

 c) 4x- 25 = ( 2x )2 - 52 = ( 2x - 5 )( 2x + 5 )

 d) 6x- 9x2 = 3x ( 2 - 3x )

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

25 tháng 5 2017

a)\(81x^2-6yz-9y^2-z^2\)

\(=81x^2-\left(z-3y\right)^2\)

\(=\left(9x-z+3y\right)\left(9x+z-3y\right)\)

b)\(x^2y-x^3-9y+9x\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)

c)\(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2-4z^2\right)\)

\(=3\left[\left(a-b\right)^2-4z^2\right]\)

\(=3\left(a-b-2z\right)\left(a-b+2z\right)\)

26 tháng 5 2017

a)\(81x^2-6yz-9y^2-z^2=\left(9x\right)^2-\left(9y^2+6yz+z^2\right)=\left(9x\right)^2-\left(3y+z\right)^2=\left(9x-3y-z\right)\left(9x+3y+z\right)\)b)\(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x^2-9\right)\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)

c)\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)

21 tháng 10 2021

\(\left(x+5\right)\left(x^2-5x+25\right)\)

\(=\left(x+5\right)\left(x^2-5.x+5^2\right)\)

\(=x^3+5^3\)

\(=x^3+125\)

21 tháng 10 2021

3) \(27-y^3\)

\(=3^3-y^3\)

\(=\left(3-y\right)\left(9-3y+y^2\right)\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm