Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:\(3^{n+2}-2^{n+2}+3^n-2^n\)
=\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
=\(3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
=\(3^n.10-2^n.5\)
=\(3^n.10-2^{n-1}.2.5\)
=\(3^n.10-2^{n-1}.10\)
=\(\left(3^n-2^{n-1}\right).10⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Nhớ tick cho mình nha!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
![](https://rs.olm.vn/images/avt/0.png?1311)
Thử ha! Lâu không làm quên mất cách làm rồi má ơi:((
Giả sử \(n^k⋮n-1\left(1\right)\Rightarrow n⋮n-1\) Vì:
Nếu n không chia hết cho n - 1 thì khi phân tích ra thừa số nguyên tố, n không chứa n - 1 nên nk cũng không chưa thừa số nguyên tố n - 1 suy ra nk không chia hết cho n - 1. Mâu thuẫn với điều giả sử (1)
Vậy \(n⋮n-1\Leftrightarrow\left(n-1\right)+1⋮\left(n-1\right)\Rightarrow1⋮\left(n-1\right)\)
Suy ra \(n-1\inƯ\left(1\right)=1\left(\text{không xét }-1\text{ vì n\ge3 nên }n-1\text{dương. Do vậy ta chỉ xét ước dương}\right)\Rightarrow n=2\)
Mà n = 2 không thỏa mãn đk nên không tồn tại n > 3 thỏa mãn n chia hết cho n - 1 tức là không tồn tại nk chia hết cho n - 1 (mẫu thuẩn với điều giả sử)
Do vậy ta có đpcm.
P/s: Sai thì thôi nhá, quên mất cách làm mọe rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Đặt \(E_n=n^3+3n^2+5n\)
- Với n=1 thì E1=9 chia hết 3
- Giả sử En đúng với \(n=k\ge1\) nghĩa là:
\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)
- Ta phải chứng minh Ek+1 chia hết 3,tức là:
Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3
Thật vậy:
Ek+1=(k+1)3+3(k+1)2+5(k+1)
=k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)
Theo giả thiết quy nạp thì Ek chia hết 3
ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3
=>Ek chia hết 3 với mọi \(n\in N\)*
![](https://rs.olm.vn/images/avt/0.png?1311)
Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta co
\(3^{n+2}-2^{n+4}+3^n+2^n=3^n.3^2-2^n.2^4+3^n+2^n=3^n.\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15=5.\left(3^n.2-2^n.3\right)=5.2.3.\left(3^{n-1}-2^{n-1}\right)=30.\left(3^{n-1}-2^{n-1}\right)\)
Vì 30 chia hêt cho 30 nên 30.(\(3^{n-1}-2^{n-1}\)) chia hêt cho 30
Hay \(3^{n+2}-2^{n+4}+3^n+2^n\) chia hêt cho 30
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)+ \(3^n-2^n\)= \(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
= \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)= \(3^n\times10-2^{n-1}\times10\)
= 10 \(\times\left(3^n+2^{n+1}\right)\)
chia hết cho 10
Bài 2 :
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)
= \(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)
chia het cho 100
![](https://rs.olm.vn/images/avt/0.png?1311)
b)
a=3n+1+3n-1=3n(3+1)-1=3n*4-1
Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}
=>{3n*4}E{2;8;15;29;36;...}
=>3nE{9;...} => nE{3;...}
b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1
Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}
=>{3N*5}E{0;6;13;27;34;...}
=>3NE{0;...}
=>NE{0;...}
=>đpcm(cj ko chắc cách cm này)
ta có 60^n=60.60.60..60(n số 60)mà 60 chia hết cho 15->60^N chia hết cho 15
45 chia hết cho 15=>60^n+45 chia hết cho 15
60^n chia hết cho 30 mà 45 ko chia hết cho 30 nên 60^n+45 ko chia hết cho 30